You are viewing this Kingdom as classified by:

Articles on this page are available in 1 other language: Spanish (12) (learn more)

Overview

Comprehensive Description

Description of Animalia

The Animalia are the animals. The word metazoa is also used for this group. Animals include sponges, cnidaria and all animals with epithelia (sheets of cells covering the outside of the organism, the gut system, and from which other organisms are derived). Animals are distinguished as organisms which may be multicellular, use extracellular collagen as a skeletal material, have a sexual developmental cycle that involves motile sperm, relatively immotile eggs, and development that involves the formation of a blastula (or are derived from organisms with these features). With our current understanding, this life form has diversified much more than any other group. Animals were often divided into the vertebrates (including fish, amphibia, reptiles and birds, and mammals), and the invertebrates. Most invertebrates and all vertebrates are organisms that are bilaterally symmetrical - with many organs such as appendages motion, sensory organs, nerves and muscle - similar on both sides of the body. Most animals have a head - a region with a concentration of sensory organisms and nervous system (brain). The animals evolved from a group of unicellular organisms - the choanoflagellates or collar flagellates. The first multicellular organisms were the sponges. Later organisms like jellyfish appeared, and these are represented in the fossil record. While sponges are filter feeders, the cnidaria (includes jellyfish) eat larger morsels of food. This style of feeding, coupled with the ability to actively move, set off the explosion of animal life. Worm-like organisms with appendages, heads, centralized nervous systems followed next and much of the animal diversity was established in the Cambrian geological period. Animals are the most successful (in terms of number of species) of evolutionary lineages that moved from unicellularity to multicelluarity - current estimates being that there are about 1,500,000 species, but this excludes fossil species and the myriads of so far undescribed animals.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

biopedia

Source: BioPedia

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Description of Animalia

The animalia are the animals. The word metazoa is also used for this group. Animals include sponges, cnidaria and all animals with epithelia (sheets of cells covering the outside of the organism, the gut system, and from which other organisms are derived). Animals are distinguished as organisms which may be multicellular, use extracellular collagen as a skeletal material, have a sexual developmental cycle that involves motile sperm, relatively immotile eggs, and development that involves the formation of a blastula (or are derived from organisms with these features). With our current understanding, this life form has diversified much more than any other group. Animals are often divided into the vertebrates (including fish, amphibia, reptiles and birds, and mammals), and the invertebrates. Most invertebrates and all vertebrates are organisms that are bilaterally symmetrical - with many organs such as appendages for senses, motion, nerves and muscle - similar on both sides of the body. Most animals have a head - a region with a concentration of sensory organisms and nervous system (brain). The animals evolved from a group of unicellular organisms - the choanoflagellates or collar flagellates. the first multicellular organisms were the sponges. Later organisms like jellyfish appeared, and these are represented in the fossil record. While sponges are filter feeders, the cnidaria (includes jellyfish) eat larger morsels of food. This ability coupled with the ability to actively move, set off the explosion of animal life. Worm-like organisms with appendages, heads, centralized nervous systems followed and much of the animal diversity was established in the Cambrian geological period. Animals are the most successful (in terms of number of species) of evolutionary lineages that moved from unicellularity to multicelluarity - current estimates being that there are about 1,500,000 species - but this excludes fossil species and the myriads of so far undescribed animals.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

David

Source: BioPedia

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Ecology

Associations

Animal / predator
bladder of Utricularia is predator of Animalia

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Known predators

Animalia (marine animals) is prey of:
Rissa
Cepphus
Fratercula
Fulmarus glacialis
Alle alle
Somateria
Gavia stellata
Clangula hyemalis
Phocidae

Based on studies in:
Norway: Spitsbergen (Coastal)

This list may not be complete but is based on published studies.
  • V. S. Summerhayes and C. S. Elton, Contributions to the ecology of Spitsbergen and Bear Island, J. Ecol. 11:214-286, from p. 232 (1923).
Creative Commons Attribution 3.0 (CC BY 3.0)

© SPIRE project

Source: SPIRE

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Evolution and Systematics

Functional Adaptations

Functional adaptation

Peptide defensin fights pathogens: animals
 

Defensins are naturally produced peptides that inhibit pathogen growth and degrade pathogen toxins by binding to the pathogens

   
  “In addition to their bacterial membrane permeabilizing capacity, defensins have been shown to neutralize bacterial invasion by directly binding to bacterial toxins….Similar properties have been described for retrocyclins, a class of circular defensins found in non-human primates, which were shown to bind to the anthrax lethal factor with high affinity [66].” (de Leeuw and Lu 2007:69)
  Learn more about this functional adaptation.
  • Zou, G.; De Leeuw, E.; Li, C.; Pazgier, M.; Li, C.; Zeng, P.; Lu, W-Y.; Lubkowski, J.; Lu, W. 2007. Toward understanding the cationicity of defensins. The Journal of Biological Chemistry. 282(27): 19653-19665.
  • de Leeuw, E.; Lu, W. 2007. Human defensins: turning defense into offense?. Infectious Disorders Drug Targets. 7(1): 67-70.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© The Biomimicry Institute

Source: AskNature

Trusted

Article rating from 1 person

Average rating: 1.0 of 5

Functional adaptation

Mucins trap pathogens: animals
 

Mucins of animals stop invading pathogens by being coated with sugar chains that trap the invaders.

   
  "Researchers at the University of Massachusetts and Yale University are looking for ways to trap viruses. In order to reproduce, viruses need to invade a host cell and replicate using the cell's own DNA-replication system. The researchers figured that if they could lure viruses to decoy cells, they could reduce the viral load enough for someone with HIV or other disease for that person's own immune system to successfully fight off the attack. Mucins are proteins found in most body fluids. They are coated with sugar chains that trap invading pathogens. Red blood cells also appear to act as pathogen traps. One approach is to coat nanoparticles with viral receptors. Another approach is to add decoy attachment sites to red blood cells. One advantage of using viral traps is it would be hard for viruses to evolve resistance to them." (Courtesy of the Biomimicry Guild)

  Learn more about this functional adaptation.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© The Biomimicry Institute

Source: AskNature

Trusted

Article rating from 1 person

Average rating: 1.0 of 5

Functional adaptation

Enzyme oxidizes fat-soluble organic chemicals: animals
 

The metabolism of animals oxidizes fat-soluble organic chemicals into excretable water-soluble substances, via P450 enzymes.

   
  "The number of P450 genes cloned from various organisms such as animals, plants, yeasts, fungi, bacteria and sequenced is presently over 2000 and still increasing…P450s are major enzymes in drug metabolism in animal tissues and organs because they convert the pharmaceutics to more hydrophilic metabolites which are easily excreted into urine." (Hara 2000:103)
  Learn more about this functional adaptation.
  • Hara, Masayuki. 2000. Application of P450s for biosensing: combination of biotechnology and electrochemistry. Materials Science and Engineering: C. 12(1-2): 103-109.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© The Biomimicry Institute

Source: AskNature

Trusted

Article rating from 1 person

Average rating: 1.0 of 5

Functional adaptation

Arterial walls resist stretch: animals
 

The arterial walls of many animals resist stretch disproportionately by incorporating non-stretchy collagen fibers in a particular arrangement.

 
  "In effect, Laplace's law rules out the use of ordinary elastic materials for arterial walls, requiring that an appropriate material fight back against stretch, not in direct proportion to how much it's stretched, but disproportionately as stretch increases. Which, again in obedience to the dictates of the real world, our arterial walls do--aneurysms, fortunately, remain rare and pathological. We accomplish the trick first, by incorporating fibers of a non-stretchy material, collagen, in those walls, and second, by arranging those fibers in a particular way. Thus, as the wall expands outward, more and more of these inextensible fibers are stretched out to their full lengths and add their resistance to stretch to that of the wall as a whole." (Vogel 2003:7-8)
  Learn more about this functional adaptation.
  • Steven Vogel. 2003. Comparative Biomechanics: Life's Physical World. Princeton: Princeton University Press. 580 p.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© The Biomimicry Institute

Source: AskNature

Trusted

Article rating from 1 person

Average rating: 1.0 of 5

Functional adaptation

Moving efficiently through water: aquatic animals
 

Aquatic organisms move effectively through water by maximizing propulsion efficiency.

         
  "It [the Froude propulsion efficiency] says that for highest efficiency, the velocity of the fluid issuing from the propulsive unit--paddle, propeller, jet, or whatever--should be as close as possible to the velocity of the craft...Clearly the way to maximize Froude propulsion efficiency consists of moving the largest possible mass-per-time (m/t) of fluid and giving it the least possible increase in speed (v2-v1). In practical terms that means maximizing S, the cross section of the propulsive flow stream."

While the Froud efficiencies "vary in quality and involve differenty underlying assumptions and simplifications, the picture that emerges is satisfyingly consistent with our expectations."

"* Moving water with undulating body, beating wing, or swinging tail beats squeezing water out of a jet, as anticipated. A squid may jet fast, but when it wants to go far, it's more likely to use its fins.

"* The same undulating devices do better than systems that move water back-wards with a paddling system, with its alternating power and recovery strokes. We'll return to this comparison between 'lift-based' and 'drag-based' propulsion in chapter 13.

"*Bigger (or at least moderate size) is better than smaller. Except for one questionable datum for a bacterial flagellum, no creature below about a centimeter in length does better than ηf = 0.5. The pernicious effects of low Reynolds number (chapter 11) cannot be denied.

"*The broad hydrozoan medusae (essentially small jellyfish) may use jet propulsion, but they do it by pushing out an especially large volume (relative to their own) through a wide aperture. So they have a much higher m and lower v2 than the other jetters, and thus evade most of the difficulty inherent in equations (7.5) and (7.6)." (Vogel 2003:142-143)
  Learn more about this functional adaptation.
  • Steven Vogel. 2003. Comparative Biomechanics: Life's Physical World. Princeton: Princeton University Press. 580 p.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© The Biomimicry Institute

Source: AskNature

Trusted

Article rating from 1 person

Average rating: 1.0 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!