Articles on this page are available in 1 other language: Spanish (7) (learn more)

Overview

Distribution

occurs (regularly, as a native taxon) in multiple nations

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

National Distribution

Canada

Origin: Native

Regularity: Regularly occurring

Currently: Present

Confidence: Confident

Type of Residency: Breeding

United States

Origin: Native

Regularity: Regularly occurring

Currently: Present

Confidence: Confident

Type of Residency: Breeding

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Global Range: BREEDING: southeastern Alaska, through western Canada south through western U.S. to northern Baja California, southern Nevada, southwestern Utah, Arizona, southern New Mexico, and western Texas (one questionable record for southern Wisconsin). NON-BREEDING: southern Baja California and central mainland of Mexico south to Costa Rica (rarely southern U.S.), casually to western Panama.

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Range

W North America; winters to w Panama.
  • Clements, J. F., T. S. Schulenberg, M. J. Iliff, D. Roberson, T. A. Fredericks, B. L. Sullivan, and C. L. Wood. 2014. The eBird/Clements checklist of birds of the world: Version 6.9. Downloaded from http://www.birds.cornell.edu/clementschecklist/download/

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

The breeding range of the western tanager, as described by literature reviews and field guides, includes forests along the western coast of North America from southeastern Alaska south to northern Baja California. Western tanagers extend east to western Texas and north through central New Mexico, central Colorado, extreme northwest Nebraska, and areas of western South Dakota to southern Northwest Territories, Canada [28,54,58,117]. Reviews report the western tanager's wintering range as stretching from central Costa Rica north through Nicaragua, Honduras, El Salvador, and Guatemala to southern Baja California Sur and extreme southeastern Sonora in western Mexico and to southern Tamaulipas in northeastern Mexico. Western tanagers do not typically occur in the Caribbean lowlands. They have been reported wintering further north and have been observed as far south as Panama [28,54,58,117]. Accidentals are rare to casual in the eastern United States [117,129]. A general map of the western tanager's distribution can be found at Cornell's All About Birds website.

The following lists are speculative and are based on western tanager distribution information and the habitat characteristics and species composition of communities western tanagers are known to occupy during migration and breeding. There is not conclusive evidence that western tanagers occur in all the habitat types listed and some community types, especially nonconiferous habitats, may have been omitted. Abundance of western tanagers in the community types listed is variable. Western tanagers are rarely observed in some of the following communities and are quite common in others. See Preferred Habitat for more detail.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

States or Provinces

(key to state/province abbreviations)
UNITED STATES
AK AZ CA CO ID MT NE NV NM OR
SD TX UT WA WY

CANADA
AB BC NT SK YK

MEXICO
Ags. B.C.S. Chis. Chih. Col. Dgo. Gto. Gro. Hgo. Jal.
Mex. Mich. Mor. Nay. Oax. Pue. Qro. S.L.P. Sin. Son.
Tab. Tamps. Tlax. Ver. Zac. D.F.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Regional Distribution in the Western United States

More info on this topic.

This species can be found in the following regions of the western United States (according to the Bureau of Land Management classification of Physiographic Regions of the western United States):

BLM PHYSIOGRAPHIC REGIONS [15]:

1 Northern Pacific Border

2 Cascade Mountains

3 Southern Pacific Border

4 Sierra Mountains

5 Columbia Plateau

6 Upper Basin and Range

7 Lower Basin and Range

8 Northern Rocky Mountains

9 Middle Rocky Mountains

10 Wyoming Basin

11 Southern Rocky Mountains

12 Colorado Plateau

13 Rocky Mountain Piedmont

15 Black Hills Uplift

16 Upper Missouri Basin and Broken Lands

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Physical Description

Size

Length: 18 cm

Weight: 28 grams

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Type Information

Type for Piranga ludoviciana
Catalog Number: USNM 262925
Collection: Smithsonian Institution, National Museum of Natural History, Department of Vertebrate Zoology, Division of Birds
Sex/Stage: Male;
Preparation: Skin: Whole
Collector(s): A. Howell
Year Collected: 1918
Locality: Santa Rita Mountains, Madera Canyon, Santa Cruz, Arizona, United States, North America
  • Type: Oberholser. September 23, 1974. Bird Life Of Texas. ii: 845, 847.
Creative Commons Attribution 3.0 (CC BY 3.0)

© Smithsonian Institution, National Museum of Natural History, Department of Vertebrate Zoology, Division of Birds

Source: National Museum of Natural History Collections

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Type for Piranga ludoviciana
Catalog Number: USNM 262925
Collection: Smithsonian Institution, National Museum of Natural History, Department of Vertebrate Zoology, Division of Birds
Sex/Stage: Male;
Preparation: Skin: Whole
Collector(s): A. Howell
Year Collected: 1918
Locality: Santa Rita Mountains, Madera Canyon, Santa Cruz, Arizona, United States, North America
  • Type: Oberholser. September 23, 1974. Bird Life Of Texas. ii: 845, 847.
Creative Commons Attribution 3.0 (CC BY 3.0)

© Smithsonian Institution, National Museum of Natural History, Department of Vertebrate Zoology, Division of Birds

Source: National Museum of Natural History Collections

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Ecology

Habitat

Habitat and Ecology

Systems
  • Terrestrial
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Comments: Breeds mostly in coniferous and mixed mountain woodlands. Migrates and winters in a variety of forest, woodland, scrub and partly open habitats (Terres 1980). Usually nests in conifer, on outer portion of limb, 3-20 m above ground (Terres 1980).

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Rangeland Cover Types

More info on this topic.

This species is known to occur in association with the following Rangeland Cover Types (as classified by the Society for Range Management, SRM):

More info for the terms: cover, forb, shrub

SRM (RANGELAND) COVER TYPES [114]:

107 Western juniper/big sagebrush/bluebunch wheatgrass

109 Ponderosa pine shrubland

110 Ponderosa pine-grassland

201 Blue oak woodland

202 Coast live oak woodland

203 Riparian woodland

206 Chamise chaparral

210 Bitterbrush

211 Creosote bush scrub

212 Blackbush

216 Montane meadows

304 Idaho fescue-bluebunch wheatgrass

314 Big sagebrush-bluebunch wheatgrass

315 Big sagebrush-Idaho fescue

316 Big sagebrush-rough fescue

402 Mountain big sagebrush

409 Tall forb

411 Aspen woodland

412 Juniper-pinyon woodland

413 Gambel oak

418 Bigtooth maple

422 Riparian

501 Saltbush-greasewood

502 Grama-galleta

503 Arizona chaparral

504 Juniper-pinyon pine woodland

505 Grama-tobosa shrub

508 Creosotebush-tarbush

509 Transition between oak-juniper woodland and mahogany-oak association

ALASKAN RANGELANDS

901 Alder

921 Willow

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Cover Types

More info on this topic.

This species is known to occur in association with the following cover types (as classified by the Society of American Foresters):

More info for the term: cover

SAF COVER TYPES [33]:

201 White spruce

202 White spruce-paper birch

203 Balsam poplar

204 Black spruce

205 Mountain hemlock

206 Engelmann spruce-subalpine fir

207 Red fir

208 Whitebark pine

210 Interior Douglas-fir

211 White fir

212 Western larch

213 Grand fir

215 Western white pine

216 Blue spruce

217 Aspen

218 Lodgepole pine

219 Limber pine

220 Rocky Mountain juniper

221 Red alder

222 Black cottonwood-willow

223 Sitka spruce

224 Western hemlock

225 Western hemlock-Sitka spruce

226 Coastal true fir-hemlock

227 Western redcedar-western hemlock

228 Western redcedar

229 Pacific Douglas-fir

230 Douglas-fir-western hemlock

231 Port-Orford-cedar

232 Redwood

233 Oregon white oak

234 Douglas-fir-tanoak-Pacific madrone

235 Cottonwood-willow

237 Interior ponderosa pine

238 Western juniper

239 Pinyon-juniper

240 Arizona cypress

241 Western live oak

243 Sierra Nevada mixed conifer

244 Pacific ponderosa pine-Douglas-fir

245 Pacific ponderosa pine

246 California black oak

247 Jeffrey pine

248 Knobcone pine

249 Canyon live oak

250 Blue oak-foothills pine

251 White spruce-aspen

252 Paper birch

253 Black spruce-white spruce

254 Black spruce-paper birch

255 California coast live oak

256 California mixed subalpine

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Plant Associations

More info on this topic.

This species is known to occur in association with the following plant community types (as classified by Küchler 1964):

More info for the term: shrub

KUCHLER [64] PLANT ASSOCIATIONS:

K001 Spruce-cedar-hemlock forest

K002 Cedar-hemlock-Douglas-fir forest

K003 Silver fir-Douglas-fir forest

K004 Fir-hemlock forest

K005 Mixed conifer forest

K006 Redwood forest

K007 Red fir forest

K008 Lodgepole pine-subalpine forest

K009 Pine-cypress forest

K010 Ponderosa shrub forest

K011 Western ponderosa forest

K012 Douglas-fir forest

K013 Cedar-hemlock-pine forest

K014 Grand fir-Douglas-fir forest

K015 Western spruce-fir forest

K016 Eastern ponderosa forest

K017 Black Hills pine forest

K018 Pine-Douglas-fir forest

K019 Arizona pine forest

K020 Spruce-fir-Douglas-fir forest

K021 Southwestern spruce-fir forest

K022 Great Basin pine forest

K023 Juniper-pinyon woodland

K024 Juniper steppe woodland

K025 Alder-ash forest

K026 Oregon oakwoods

K028 Mosaic of K002 and K026

K029 California mixed evergreen forest

K030 California oakwoods

K031 Oak-juniper woodland

K032 Transition between K031 and K037

K033 Chaparral

K034 Montane chaparral

K035 Coastal sagebrush

K036 Mosaic of K030 and K035

K037 Mountain-mahogany-oak scrub

K038 Great Basin sagebrush

K039 Blackbrush

K040 Saltbush-greasewood

K041 Creosote bush

K044 Creosote bush-tarbush

K047 Fescue-oatgrass

K053 Grama-galleta steppe

K055 Sagebrush steppe

K056 Wheatgrass-needlegrass shrubsteppe

K057 Galleta-threeawn shrubsteppe

K058 Grama-tobosa shrubsteppe

K063 Foothills prairie

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Ecosystem

More info on this topic.

This species is known to occur in the following ecosystem types (as named by the U.S. Forest Service in their Forest and Range Ecosystem [FRES] Type classification):

ECOSYSTEMS [39]:

FRES20 Douglas-fir

FRES21 Ponderosa pine

FRES22 Western white pine

FRES23 Fir-spruce

FRES24 Hemlock-Sitka spruce

FRES25 Larch

FRES26 Lodgepole pine

FRES27 Redwood

FRES28 Western hardwoods

FRES29 Sagebrush

FRES30 Desert shrub

FRES34 Chaparral-mountain shrub

FRES35 Pinyon-juniper

FRES36 Mountain grasslands

FRES37 Mountain meadows

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Associated Plant Communities

In addition to the plant communities listed above, western tanagers are reported from disturbed habitats. For instance, western tanagers were seen in an area of northwestern California that had been logged less than 5 years previously. Cutleaf burnweed (Erechtites glomerata) was characteristic of the youngest age class, while slightly older sites were comprised predominantly of tanoak (Lithocarpus densiflorus) with smaller amounts of snowbrush ceanothus (Ceanothus velutinus), whitebark raspberry (Rubus leucodermis), and Sierra gooseberry (Ribes roezlii) [45]. In addition, western tanagers were captured along the Rio Grande in New Mexico during spring and fall migration in an agricultural area comprised primarily of alfalfa (Medicago sativa) and corn (Zea mays) [136].

Western tanagers have also been observed in saltcedar (Tamarix spp.) communities [32,136] and in Russian-olive (Elaeagnus angustifolia) vegetation [62,136]. In New Mexico, western tanagers were observed in nearly pure stands of saltcedar 10 to 23 feet (3-7 m) tall [32]. Western tanagers were also observed in saltcedar communities during fall migration in along the Rio Grande [136]. Ten western tanagers were observed among 3 sites composed of Russian-olive in Colorado, Utah, and Idaho. All sites were dominated by Russian-olive with cheatgrass (Bromus tectorum) comprising a substantial portion of the understory [62]. Along the Rio Grande western tanagers were most often captured during fall migration in vegetation with a Rio Grande cottonwood (Populus deltoides ssp. wislizenii) overstory and a moderate to dense Russian-olive understory [136].

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Migration

Non-Migrant: No. All populations of this species make significant seasonal migrations.

Locally Migrant: No. No populations of this species make local extended movements (generally less than 200 km) at particular times of the year (e.g., to breeding or wintering grounds, to hibernation sites).

Locally Migrant: Yes. At least some populations of this species make annual migrations of over 200 km.

Arrives in U.S. April-May (Terres 1980). Arrives in southern winter range late October, departs in April (Stiles and Skutch 1989).

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Trophic Strategy

Comments: Feeds on a wide variety of insects and fruit.

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Food Habits

More info for the term: tussock

According to several reviews, western tanager obtain their food by foliage gleaning and hawking [28,54,58]. The degree to which each of these methods is used apparently varies across locations. For instance, in a California mixed conifer-oak forest consisting mainly of white fir, Douglas-fir, incense-cedar, and California black oak, about 47% of western tanager foraging observations were gleaning, about 40% were hawking, while lunging and hovering occurred in about 6% and 7% of observations, respectively [2]. In contrast, in the mainly Douglas-fir dominated communities of interior British Columbia, gleaning comprised 93.2% of western tanager foraging observations. Hawking only occurred in 3.7% of observations and hovering in 3.1% [88].

Western tanagers primarily glean from foliage. In the mixed conifer-oak woodland of California, 45% of western tanager foraging observations were foliage gleaning. Western tanagers gleaned from twigs in 10% of observations and from branches in 5% of observations. Hawking comprised the remainder of western tanager foraging observations [2]. In British Columbia, 88.3% of gleaning observations occurred on foliage, 10.5% on branches and twigs, and 1.2% on trunks [88].

Western tanagers eat fruits and a wide range of insects. A field guide states that western tanager's diet is about 18% plant matter and 82% insects [28]. According to a literature review, fruits eaten by western tanagers include hawthorn apples (Crataegus spp.), raspberries (Rubus spp.), mulberries (Morus spp.), elderberries (Sambucus spp.), serviceberries (Amelanchier spp.), and wild and cultivated cherries (Prunus spp.) [54,58,75]. Western tanagers have been observed foraging on Perry's agave (Agave parryi) nectar [65]. Reports of western tanager eating Eucalyptus (Eucalyptus spp.) nectar, Russian-olive fruits, and human-provided food, including bird seed and dried fruit, were summarized in a review [54]. A literature review asserts that western tanagers are major consumers of western spruce budworms (Choristoneura occidentalis) [66], and they have been observed eating Douglas-fir tussock moth larvae (Orgyia pseudotsugata) [127]. A study summarized in literature reviews [54,58] found 75% of insects in western tanager stomachs in August were Hymenopterans, mostly wasps and ants. The other insects observed were beetles (Coleoptera,12%), mainly click beetles (Elateridae) and woodborers (Bupestridae), true bugs (Hemipterans, 8%), grasshoppers (Orthoptera, 4%) and caterpillars (Lepidoptera, 2%).

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Associations

Predators

Several birds prey on western tanagers. Remains of a western tanager were found in a red-tailed hawk's (Buteo jamaicensis) nest in Colorado [17]. In southwestern Idaho, western tanager remains were reported in 1 of over 170 prairie falcon (Falco mexicanus) nests observed [91]. According to literature reviews, northern goshawks (Accipiter gentilis), Mexican spotted owls (Strix occidentalis spp. lucida), sharp-shinned hawks (A. striatus) and Cooper's hawks (A. cooperii) are also western tanager predators [54,100,132]. One review asserts that accipiter hawks (Accipitrinae) and jays (Corvidae) are the major predators of western tanagers. This review also includes a report of a domestic cat (Felis catus) preying on a female western tanager in British Columbia [54].

According to literature reviews, Clark's nutcrackers (Nucifraga columbiana), northern pygmy-owls (Glaucidium gnoma), great horned owls (Bubo virginianus), and jays such as scrub jays (Aphelocoma spp.), pinyon jays (Gymnorhinus cyanocephalus) and Steller's jays (Cyanocitta stelleri) are typical avian predators of western tanager nests. Other reported nest predators include black bears (Ursus americanus), prairie rattlesnakes (Crotalus viridis), and bullsnakes (Pituophis catenifer) [54]

Western tanager nests are parasitized by brown-headed cowbirds (Molothrus aster) [36,40]. Parasitism rates can be high [40], and parasitism has been shown to dramatically reduce the number of western tanagers fledged per nest [36]. A literature review summarizes information related to western tanager nest parasitism [54].

BEHAVIOR:
According to literature reviews, western tanagers migrate alone or in groups of up to 30 birds [54,58]. On average, hatching-year western tanagers were captured later (early-Sept) at Rio Grande Nature Center than adult western tanagers (mid-August) during fall migration. Migration timing, condition of birds, and site differences in spring and fall migration were also addressed in this investigation [136].

A literature review provides a detailed summary of migration and other behaviors such as vocalizations, territoriality, and self-maintenance [54].

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Known prey organisms

Piranga ludoviciana preys on:
Amazilia tzacatl

This list may not be complete but is based on published studies.
Creative Commons Attribution 3.0 (CC BY 3.0)

© SPIRE project

Source: SPIRE

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

General Ecology

Solitary in winter (Stiles and Skutch 1989).

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat-related Fire Effects

More info for the terms: density, fire frequency, fire severity, frequency, low-severity fire, moderate-severity fire, prescribed burn, severity, stand-replacing fire, tree, wildfire

Despite several articles that discuss the effect of fire on western tanagers, results should be interpreted with caution. As noted by a literature review summarizing songbird responses to fire in southwestern ponderosa pine forests [34], there are several limitations to many studies addressing bird response to fire. Most studies are restricted in spatial or temporal scale. Many are opportunistic, include confounding factors, and/or lack sufficient replication. There is also a lack of studies that compare demographic parameters of western tanager between burned and unburned vegetation, which is necessary to determine if a site is meeting the needs of western tanagers [34].

Reviews that address the effect of fire on western tanager demonstrate that several different responses have been observed [47,63,108]. However, it is possible that fire severity explains a considerable portion of the observed variation. It appears that western tanagers generally respond positively to low-severity fire and negatively to high- severity fire.

Western tanager abundance has been observed to increase after low- to moderate-severity fire [19,21,116]. Western tanager was significantly (p<0.05) more abundant in the year after prescribed underburns in a ponderosa pine forest and pine-grassland ecotone of Wind Cave National Park, South Dakota compared to unburned sites [21]. Abundance of western tanager was much greater (103 detections) on a site moderately affected by wildfire in ponderosa pine forests in Arizona than on an unburned site (20 detections) [19]. In low- to mid-elevation conifer communities of western Montana, western tanagers were significantly (p=0.005) more abundant after wildfire resulted in <20% tree mortality than before the wildfire occurred. Western tanager abundance did not increase significantly (p>0.05) on sites subject to moderate (20%-80% tree mortality) wildfire. The differences ((after fire mean minus before fire mean) x 100) in western tanagers detected before and after fire at unburned points and points that burned at low (<20% tree mortality), moderate (20%-80% tree mortality) or high severity (>80% tree mortality) are shown in the table below (sx is in parentheses) [116].

Unburned (n=120) Low (n=52) Moderate (n=32) Severe (n=38)
after fire mean - before fire mean 2.4 (5.2) 23.9 (7.3) 12.1 (8.9) -15.4 (8.6)

Much of the evidence for decreases in western tanager abundance comes from investigations of high- severity fires. In coniferous forests of Yellowstone and Grand Teton National Parks, western tanagers occurred at higher densities on unburned sites (up to 15 western tanagers/100 acres) and moderately burned sites ≤3 years old (up to 10 western tanagers/100 acres) than in areas that had burned in severe fires 2 and 3 years previously, where western tanagers were only observed outside of transects [125]. In the Sierra Nevada of California, western tanager occurred at higher densities in unburned (0.75-1.5 pairs/plot) mixed-coniferous vegetation dominated by Jeffrey pine and white fir than on sites that burned in the stand-replacing Donner Ridge Fire 6 to 8 years earlier (0-0.25 pair/plot). The burned sites were comprised of small pockets of Jeffrey pine and white fir along with post-fire vegetation such as woolly mule-ears (Wyethia >mollis), golden current (Ribes aureum), and greenleaf manzanita (Arctostaphylos patula) [20]. The trend on this site continued through 1985, with western tanager occurring at a density of 0.2 territory/plot in the burned area 15 years after the fire and 1.7 territories/plot in unburned vegetation dominated by Jeffrey pine, ponderosa pine, Washoe pine (P. washoensis), their intermediates, and white fir [98]. Although the response was not significant (p>0.05), western tanager abundance declined after severe (>80% tree mortality) wildfire in coniferous forests on low- to mid-elevation sites in western Montana [116]. A literature review that summarized the findings of 11 published and unpublished studies reported that western tanagers were more abundant on unburned sites than on 23 severely-burned conifer forest sites [63].

Studies incorporating a range of fire severities have found fire resulted in no change in western tanager abundance. For instance, in ponderosa pine-dominated forests in northern Arizona and New Mexico, western tanager did not respond to low to moderate severity prescribed burns and wildfire. The average western tanager detections over the 4 years before a prescribed burn (2.75) in Arizona were similar to the year after the fire (3.00). Average western tanager detections before a wildfire (16) on a New Mexico site were not substantially different from detections in the 2 years after the burn (13.5) [16]. Western tanagers response to high-severity surface fires in white fir and red fir communities of Yosemite National Park were inconclusive [42]. In ponderosa pine forests in Arizona, 24 western tanagers were detected on sites 3 years after they were severely burned, while 20 were detected on an adjacent unburned site [19].

Habitat type is likely to influence western tanager's response to fire. Since western tanagers appear to occur at relatively low abundance in dense forests [12,38,51] and are generally rare on very open sites such as clearcuts [25,49,128], sagebrush communities, and grasslands [57], fires that reduce tree density without dropping below some threshold may favor western tanagers. In pinyon-juniper communities of east-central Nevada, western tanagers were more abundant on a prescribed burn site than an unburned site before the burn, but were absent on the prescribed burn site after burning. In this habitat, burned areas were mainly low and herbaceous, while unburned areas were multi-layered and woody [76,77]. In addition, different western tanager responses to wildfire in different communities were reported in Grand Teton National Park. Western tanager was more abundant during the breeding season on a riparian-coniferous forest ecotone where the forest had burned in a wildfire 2 years previously than on a similar ecotone site that had not burned. However, in a sagebrush-coniferous forest ecotone western tanager breeding season abundance was greater on the unburned site than the site where the forest had burned 2 years previously [115]. According to a literature review, western tanagers occur more often in unburned than severely burned ponderosa pine forest, but are more common after stand-replacing fires in lodgepole pine communities than dense lodgepole pine forest [63].

Several factors including time since burn, occurrence of salvage logging, and fire characteristics such as size, frequency, uniformity, and season of burn are likely to influence western tanager response. However, little data are available on these factors and the type, size, and duration of their impacts on western tanager are largely unknown.

The effect of time since burn is uncertain. Nesting requirements (see Nesting habitat) suggest that extensive severe fire could result in long-term declines in western tanagers, due to the time required for large trees to regenerate on a site. However, a literature review found a higher percentage of studies reporting western tanager in early-successional burned forest (83%) than in mid-successional burned forest (20%) [56].

Salvage logging may also affect western tanagers response. In western Montana coniferous forests, western tanager density was the same in a burned forest salvaged logged to a density of 855 trees/ha, as in the unlogged burned forest with a tree density of 970/ha. However, western tanager did not occur on a salvage-logged site where a 70-ha clearcut and a 70-ha thinning to 125 trees/ha were performed after fire, while an average of 4.0 western tanagers/40 ha were observed on the burn site that was not logged (1,043 trees/ha) [50].

Given the possible importance of spatial arrangement of habitat (see Effects of spatial arrangement/area), the size and patchiness of a burn may also influence western tanager's response to fire. A literature review notes that many species that had mixed responses to fire, which included western tanager, occurred at their highest abundances within 165 feet (50 m) of the edge of burns [63]. In western Montana and northern Wyoming western tanager was negatively associated with size of stand-replacing fire, although the relationship was not significant (p>0.05) [56]. The relationship of fire to several aspects of habitat configuration is discussed in a review of the effects of fire at landscape scales [71].

Season of the burn may also affect western tanager's response. Although western tanager abundance was uniformly low in a mountain big sagebrush ecosystem (Artemisia tridentata var. vaseyana) of Wyoming, the greatest number of detections occurred in the second year following a spring prescribed burn, compared to fall prescribed burn and unburned sites [79]. Since western tanagers appear to prefer moderate to open forest stands (see Stand structure/composition), the fire frequency may affect western tanagers by influencing fire severity and forest structure [55] .

Very little information is available on the effect fire has on western tanager food resources. Although food available from gleaning foliage is likely to decline due to fire, it has been suggested that western tanager may be able to mitigate at least some of this loss by hawking aerial insects. However, little is known of these insects' response to fire [42]. General information on plant food response to fire can be found in [13,70]

Fire ecology: Western tanagers occur in a variety of habitats with a wide range of FIRE REGIMES. Breeding is most common in coniferous forests, which have FIRE REGIMES that range from frequent low-severity surface fires [18] to infrequent stand-replacement fires. A literature review provides a general overview of FIRE REGIMES in western coniferous forests [63].

The following table provides fire return intervals for plant communities and ecosystems where western tanager is important. For further information, see the FEIS review of the dominant species listed below.

Community or ecosystem Dominant species Fire return interval range (years)
silver fir-Douglas-fir Abies amabilis-Pseudotsuga menziesii var. menziesii >200
grand fir Abies grandis 35-200 [6]
sagebrush steppe Artemisia tridentata/Pseudoroegneria spicata 20-70 [93]
mountain big sagebrush Artemisia tridentata var. vaseyana 15-40 [7,23,85]
coastal sagebrush Artemisia californica <35 to <100 [93]
saltbush-greasewood Atriplex confertifolia-Sarcobatus vermiculatus <35 to >100 [93,137]
California montane chaparral Ceanothus and/or Arctostaphylos spp. 50-100 [93]
mountain-mahogany-Gambel oak scrub Cercocarpus ledifolius-Quercus gambelii <35 to <100
blackbrush Coleogyne ramosissima <35 to <100
western juniper Juniperus occidentalis 20-70
Rocky Mountain juniper Juniperus scopulorum <35
creosotebush Larrea tridentata <35 to <100 [93]
Engelmann spruce-subalpine fir Picea engelmannii-Abies lasiocarpa 35 to >200 [6]
black spruce Picea mariana 35-200 [31]
blue spruce* Picea pungens 35-200 [6]
pinyon-juniper Pinus-Juniperus spp. <35 [93]
whitebark pine* Pinus albicaulis 50-200 [1,4]
Mexican pinyon Pinus cembroides 20-70 [87,121]
Rocky Mountain lodgepole pine* Pinus contorta var. latifolia 25-340 [10,11,123]
Sierra lodgepole pine* Pinus contorta var. murrayana 35-200 [6]
Colorado pinyon Pinus edulis 10-400+ [37,41,59,93]
Jeffrey pine Pinus jeffreyi 5-30 [6]
western white pine* Pinus monticola 50-200 [6]
Pacific ponderosa pine* Pinus ponderosa var. ponderosa 1-47 [6]
interior ponderosa pine* Pinus ponderosa var. scopulorum 2-30 [6,9,68]
Arizona pine Pinus ponderosa var. arizonica 2-15 [9,27,113]
galleta-threeawn shrubsteppe Pleuraphis jamesii-Aristida purpurea <35 to <100 [93]
quaking aspen-paper birch Populus tremuloides-Betula papyrifera 35-200 [31,131]
quaking aspen (west of the Great Plains) Populus tremuloides 7-120 [6,44,83]
mesquite Prosopis glandulosa <35 to <100 [80,93]
mountain grasslands Pseudoroegneria spicata 3-40 ( x=10) [5,6]
Rocky Mountain Douglas-fir* Pseudotsuga menziesii var. glauca 25-100 [6,7,8]
coastal Douglas-fir* Pseudotsuga menziesii var. menziesii 40-240 [6,90,101]
California mixed evergreen Pseudotsuga menziesii var. menziesii-Lithocarpus densiflorus-Arbutus menziesii <35 [6]
California oakwoods Quercus spp. <35 [6]
oak-juniper woodland (Southwest) Quercus-Juniperus spp. <35 to <200 [93]
coast live oak Quercus agrifolia 2-75 [43]
canyon live oak Quercus chrysolepis <35 to 200 [6]
blue oak-foothills pine Quercus douglasii-P. sabiniana <35 [6]
Oregon white oak Quercus garryana <35 [6]
California black oak Quercus kelloggii 5-30 [93]
interior live oak Quercus wislizenii <35 [6]
redwood Sequoia sempervirens 5-200 [6,35,120]
western redcedar-western hemlock Thuja plicata-Tsuga heterophylla >200 [6]
western hemlock-Sitka spruce Tsuga heterophylla-Picea sitchensis >200 [6]
mountain hemlock* Tsuga mertensiana 35 to >200 [6]
*fire return interval varies widely; trends in variation are noted in the species review

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Direct Effects of Fire

More info for the terms: fire frequency, fire severity, frequency, severity

Adult western tanagers are unlikely to suffer directly from fire. It is generally accepted that large, fast-moving fires can result in mortality, but adult birds typically have the mobility to avoid fire [26,30,73].

It is likely that nests are more vulnerable to fire [30,92]. Although there were no data directly investigating western tanager nest mortality due to fire as of 2006, literature reviews have used fire characteristics and life history of species to speculate on possible effects of fire on nesting success and bird populations [73,102]. Due to the height of most western tanager nests (see Nesting habitat), only relatively severe fires would directly impact their young. Since conditions necessary for fire severe enough to affect nests higher in the canopy typically occur after nesting season [73], it is likely that direct effects of growing-season fire on western tanager nests would be uncommon compared to species nesting lower to the ground. In addition, the possibility of western tanager renesting may reduce the direct effects of a fire on western tanager recruitment [73,102]. Nests impacted early enough in the breeding season could be compensated for by later nesting attempts. However, since western tanagers only rear 1 brood per season (see Timing of Major Life History Events) fires of enough severity in the mid- to late-breeding season are likely to have a larger effect on western tanagers than fires before or after the breeding season [72] and may have substantial impacts on the survival of western tanager nestlings and fledglings. In addition to fire severity and timing, other fire characteristics such as the uniformity of the burn and fire frequency are likely to influence the degree to which fire directly impacts western tanager reproduction [52,73].

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Timing of Major Life History Events

Western tanagers arrive on their breeding grounds (see General Distribution) in spring. Literature reviews report breeding primarily by western tanagers that are ≥2 years old beginning in May and continuing into July, although some 1st-year western tanagers also breed [54,58]. In the Sandia Mountains of north-central New Mexico, western tanagers were heard singing beginning in late May, and the 1st nest was found in early June [124]. In public open-space areas in Boulder County, Colorado, the start of the western tanager breeding season was estimated as 28 May, and the peak of the breeding season, defined as at least 50% of western tanager nests active, was from 6 June to 1 July [36]. A review [54] summarizes records of brooding dates in several areas of the West. In the Southwest brooding generally begins in early May, while in the Northwest brooding starts typically in mid-June. Brooding can begin earlier in British Columbia and Alberta than in the northwestern United States. An egg-laying date as early as 16 May in British Columbia was estimated by back calculation, and a complete egg set was observed as early as 26 May in Alberta [54].

According to reviews, cup nests are built by the female, take about 4 or more days to construct, and are made from twigs, rootlets, grasses, and pine needles [54,58]. There is no evidence for 2nd broods in western tanagers [36,54]. However, a literature review notes a nesting attempt after a failed nest in west-central Idaho and suggests that renesting is a substantial source of late nesting attempts [54]. In addition, renesting was suggested as the explanation for a few late nests observed in Boulder County, Colorado [36].

Clutch size is typically 3 to 5 eggs [36,54,58]. Average clutch size in 10 nonparasitized nests in Boulder County was 3.8 eggs [36]. A literature review suggests that average clutch in the Southwest may be smaller than that of western tanagers nesting in the North [54]. According to a personal communication cited in a literature review, egg laying generally takes about 1 day per egg [54]. The female incubates the eggs for approximately 13 days, although shorter incubation periods have been reported. The young are fed by both parents and typically fledge 11 to 15 days after hatching [36,54,58]. According to a literature review, immature western tanagers have been observed with the parents at least 2 weeks after fledging [54].

A literature review notes that immature western tanagers initiate migration later than adult birds. Generally western tanagers leave more northerly locations in late summer or early fall while those in more southerly areas may stay as late as early November [54].

Reproductive success of western tanagers varies widely between studies and across years. A summary of nest success in a literature review included an average annual nest success probability estimate of 0.186 over 3 years, with a low of 0.035 and a high of 0.349 [54]. In a northern Arizona study area, an average of 43% (n=7) of nests succeeded to the nestling stage [16]. In Boulder County, nesting success varied from 11.3% to 75.3%, with an average of 51.8% over a 3-year period [36]. Daily nest survival rate on ungrazed sites in northeastern New Mexico was 0.955, which was not significantly (p<0.05) different from the 0.973 daily nest survival rate found on grazed sites [40]. According to a review, nest predation is the leading cause of nest failure. Predation rates ranged from 30% (n=48) in a study in New Mexico pinyon-juniper woodland to 86% (n=14) in a mixed-conifer forest in Idaho [54].

Western tanagers can live several years. A literature review includes an estimate of annual average survival rate of 0.753 and a return rate of 30.1% for western tanagers in west-central Idaho [54]. A wild western tanager 7 years and 11 months old has been documented from banding data [61].

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life History and Behavior

Life Expectancy

Lifespan, longevity, and ageing

Maximum longevity: 15.3 years
Creative Commons Attribution 3.0 (CC BY 3.0)

© Joao Pedro de Magalhaes

Source: AnAge

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Reproduction

Clutch size is 3-5. Incubation, by female, lasts about 13 days. Altricial young are tended by both adults.

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Molecular Biology and Genetics

Molecular Biology

Barcode data: Piranga ludoviciana

The following is a representative barcode sequence, the centroid of all available sequences for this species.


There are 6 barcode sequences available from BOLD and GenBank.

Below is a sequence of the barcode region Cytochrome oxidase subunit 1 (COI or COX1) from a member of the species.

See the BOLD taxonomy browser for more complete information about this specimen and other sequences.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGTAGGTACTGCCCTGAGCCTCCTTATCCGAGCAGAGCTGGGACAACCTGGAGCTCTTCTAGGAGACGACCAAGTCTACAATGTAGTCGTCACAGCCCATGCTTTTGTAATAATCTTCTTCATAGTTATACCAATTATAATCGGAGGGTTCGGAAACTGACTAGTCCCCCTAATAATTGGAGCCCCAGACATAGCATTCCCACGAATAAATAACATAAGCTTCTGACTACTTCCCCCATCCTTCCTTCTCCTCCTAGCATCTTCCACCGTAGAAGCAGGTGTCGGCACAGGCTGAACAGTATATCCCCCACTAGCTGGTAACCTAGCCCACGCCGGAGCCTCAGTCGACCTAGCAATCTTTTCCCTGCATCTAGCCGGCATTTCTTCAATCCTAGGAGCCATTAACTTTATCACAACAGCAATCAACATAAAACCCCCTGCTCTCTCACAATACCAAACCCCCTTATTCGTTTGATCTGTCTTAATTACCGCAGTCCTACTGCTCCTTTCTCTCCCAGTACTAGCTGCAGGGATCACAATACTCCTCACAGACCGTAACCTCAACACTACATTCTTCGACCCCGCTGGTGGAGGAGACCCTATCCTGTACCAACATCTTTTCTGATTCTTCGGCCACCCAGAAGTCTACATCCTAATCCTA
-- end --

Download FASTA File

Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Statistics of barcoding coverage: Piranga ludoviciana

Barcode of Life Data Systems (BOLDS) Stats
Public Records: 7
Specimens with Barcodes: 8
Species With Barcodes: 1
Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Conservation

Conservation Status

IUCN Red List Assessment


Red List Category
LC
Least Concern

Red List Criteria

Version
3.1

Year Assessed
2012

Assessor/s
BirdLife International

Reviewer/s
Butchart, S. & Symes, A.

Contributor/s

Justification
This species has an extremely large range, and hence does not approach the thresholds for Vulnerable under the range size criterion (Extent of Occurrence <20,000 km2 combined with a declining or fluctuating range size, habitat extent/quality, or population size and a small number of locations or severe fragmentation). The population trend appears to be increasing, and hence the species does not approach the thresholds for Vulnerable under the population trend criterion (>30% decline over ten years or three generations). The population size is extremely large, and hence does not approach the thresholds for Vulnerable under the population size criterion (<10,000 mature individuals with a continuing decline estimated to be >10% in ten years or three generations, or with a specified population structure). For these reasons the species is evaluated as Least Concern.

History
  • Least Concern (LC)
  • Least Concern (LC)
  • Least Concern (LC)
  • Lower Risk/least concern (LR/lc)
  • Lower Risk/least concern (LR/lc)
  • Lower Risk/least concern (LR/lc)
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5