Articles on this page are available in 1 other language: Spanish (1) (learn more)

Overview

Distribution

National Distribution

Canada

Origin: Unknown/Undetermined

Regularity: Regularly occurring

Currently: Unknown/Undetermined

Confidence: Confident

United States

Origin: Unknown/Undetermined

Regularity: Regularly occurring

Currently: Unknown/Undetermined

Confidence: Confident

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Occurrence in North America

     AK  CA  OR  WA  BC

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Salal grows along the Pacific Coast inland to the western slope of the
Cascades and Coast Ranges [67].  It occurs from southeastern Alaska and
central British Columbia southward to southern California
[28,67,102,130].

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Regional Distribution in the Western United States

More info on this topic.

This species can be found in the following regions of the western United States (according to the Bureau of Land Management classification of Physiographic Regions of the western United States):

   1  Northern Pacific Border
   2  Cascade Mountains
   3  Southern Pacific Border

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Physical Description

Morphology

Description

More info for the terms: capsule, shrub

Salal is an erect to spreading, clonal evergreen shrub or subshrub which
grows 1.3 to 10 feet (0.4-3 m) in height [16,67,80,98].  This loosely to
densely branched shrub often forms dense, nearly impenetrable thickets
[45].  Stems are pilose to hirsute [67] and branchlets glandular to
pubescent [98].  Twigs are reddish-brown with shredding bark [130].
Most biomass is concentrated below ground [102] and an extensive, but
variable network of roots and rhizomes [24] occupies the top layer of
soil [79].

Leaves are ovate to ovate-elliptic, sharply serrulate, and 2 to 4 inches
(5-10 cm) in length [66,80].  The shiny dark green, alternate leaves are
thick and leathery [24,45,80].

Small, urn-shaped flowers are borne in showy clusters on terminal and
subterminal bracteate racemes [42,45,66,80].  The white, pink or
deep-rose tinged flowers are sticky and glandular [80,98].  Floral
morphology has been examined in detail [19].  Fruit is a round, reddish,
purplish, or bluish black "pseudoberry" or capsule which is made up of a
fleshy outer calyx [45].  Fruits are covered with tiny hairs [42] and
average 0.24 to 0.4 inch (6-10 mm) in diameter [66].  Each fruit
contains an average of 126 brown, reticulate seeds approximately 0.04
inch (1 mm) in length [45,98].

Salal leaves generally live for 2 to 4 years [45].  Twigs survive for 16
years or longer, but bear leaves only during the first few years [45].
Rhizomatous portions of individual plants can live for hundreds of years
[102].

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Ecology

Habitat

Puget Lowland Forests Habitat

Cope's giant salamander is found in the Puget lowland forests along with several other western North America ecoregions. The Puget lowland forests occupy a north-south topographic depression between the Olympic Peninsula and western slopes of the Cascade Mountains, extending from north of the Canadian border to the lower Columbia River along the Oregon border. The portion of this forest ecoregion within British Columbia includes the Fraser Valley lowlands, the coastal lowlands locally known as the Sunshine Coast and several of the Gulf Islands. This ecoregion is within the Nearctic Realm and classified as part of the Temperate Coniferous Forests biome.

The Puget lowland forests have a Mediterranean-like climate, with warm, dry summers, and mild wet winters. The mean annual temperature is 9°C, the mean summer temperature is 15°C, and the mean winter temperature is 3.5°C. Annual precipitation averages 800 to 900 millimeters (mm) but may be as great as 1530 mm. Only a small percentage of this precipitation falls as snow. However, annual rainfall  on the San Juan Islands can be as low as 460 mm, due to rain-shadow effects caused by the Olympic Mountains. This local rain shadow effect results in some of the driest sites encountered in the region. Varied topography on these hilly islands results in a diverse assemblage of plant communities arranged along orographically defiined moisture gradients. Open grasslands with widely scattered trees dominate the exposed southern aspects of the islands, while moister dense forests occur on northern sheltered slopes characterized by Western red cedar (Thuja plicata), Grand fir (Abies grandis), and Sword fern (Polystichum munitum) communities.

There are only a small number of amphibian taxa in the Puget lowland forests, namely: Cope's giant salamander (Dicamptodon copei); Monterey ensatina (Ensatina eschscholtzii); Long-toed salamander (Ambystoma macrodactylum); Western redback salamander (Plethodon vehiculum); Northwestern salamander (Ambystoma gracile); Pacific chorus frog (Pseudacris regilla); Coastal giant salamander (Dicamptodon tenebrosus); Rough-skin newt (Taricha granulosa);  the Vulnerable Spotted frog (Rana pretiosa); Tailed frog (Ascopus truei); and Northern red-legged frog (Rana aurora).

Likewise there are a small number of reptilian taxa within the ecoregion: Common garter snake (Thamnophis sirtalis); Western terrestrial garter snake (Thamnophis sirtalis); Northern alligator lizard (Elgaria coerulea); Western fence lizard (Sceloporus occidentalis); Northwestern garter snake (Thamnophis ordinoides); Sharp-tailed snake (Contia tenuis); Yellow-bellied racer (Coluber constrictor); and Western pond turtle (Clemmys marmorata).

There are numberous mammalian taxa present in the Puget lowland forests. A small sample of these are:Creeping vole (Microtus oregoni), Raccoon (Procyon lotor), Southern sea otter (Enhydra lutris), Mink (Mustela vison), Coyote (Canis latrans), Black-tailed deer (Odocoileus hemionus), Pallid bat (Antrozous pallidus), and Harbour seal (Phoca vitulina).

A rich assortment of bird species present in this ecoregion, including the Near Threatened Spotted owl (Strix occidentalis), Turkey vulture (Cathartes aura), Bald eagle (Haliaeetus leucocephalus), Blue grouse (Dendragapus obscurus), as well as a gamut of seabirds, numerous shorebirds and waterfowl.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© World Wildlife Fund & C.MIchael Hogan

Supplier: C. Michael Hogan

Trusted

Article rating from 1 person

Average rating: 5.0 of 5

Habitat characteristics

More info for the terms: epiphyte, peat, peatland, shrub, vine

Salal grows in warm, moist to dry, montane to lowland coastal conifer
forests of the Pacific Northwest [50,66].  It occurs in a variety of
communities including marginal peatland forests, soligenous fens,
forested swamps, bogs, and muskegs [39,99,125].  In parts of British
Columbia, it occurs in shrub communities at the driest edges of bogs
[59,132].  Salal is tolerant of salt spray and commonly forms dense
stands in northern coastal shrub communities [50,58].  It grows well on
stabilized dunes, exposed slopes, rocky bluffs, and knolls near the
ocean [37,45].  It is a common component of swampy shore pine or spruce
woodlands [37,126].  Salal commonly grows vigorously after stands are
opened by timber harvest and persists in many coastal brushfields.
Salal grows well in partial shade, although vigor may be poor beneath a
dense canopy [45].  This shrub persists in sun or shade [138].  Salal
commonly forms dense thickets beneath the forest canopy and at forest
margins [80].  In pygmy forests dominated by bishop pine (Pinus
muricata), lodgepole pine, and cypress (Cupressus pygmaea), it grows as
a dwarf, spreading shrub [126,137].

Salal typically occurs on moderately warm dry sites in western hemlock
communities [26,51,79] and on very dry to wet sites in coastal
Douglas-fir communities [100].  Salal grows on warm, dry sites with
Pacific silver fir [60] and on drier sites in Port-Orford-cedar and
tanoak communities [5,6].  It grows as an understory dominant in coastal
coniferous forests [45] commonly dominated by western hemlock, western
redcedar, Port-Orford cedar, Sitka spruce, lodgepole pine, and Alaska
cedar (Chamaecyparis nootkatensis) [39,46,130,138].  Salal is also
common in mixed evergreen, redwood (Sequoia sempervirens), and subboreal
spruce communities, and in pygmy forests of northern California
[52,98,114,126,137].

Plant associates:  Salal commonly occurs with species such as red alder
(Alnus rubra), salmonberry (Rubus spectabilis), vine maple, western
swordfern, rhododendron, vaccinium (Vaccinium spp.), dwarf Oregon grape,
Pacific dogwood (Cornus nuttallii), tanoak, threeleaf foamflower, and
deerfern in western hemlock or western hemlock-western redcedar forests
[8,51,56,63].  Vine maple, oceanspray, dwarf Oregon grape, Pacific
rhododendron (Rhododendron macrophyllum), and California hazel are
common associates in Douglas-fir forests [3,44,48].  The understory may
be depauperate in old growth stands.  In redwood forests, salal grows
with dwarf Oregon grape, evergreen huckleberry, willow (Salix spp.),
California hazel, Pacific madrone (Arbutus menziesii), California laurel
(Umbellularia californica), and rhododendron [113,126].  In northern
coastal scrub, chaparral broom (Baccharis pilularis), many-colored
lupine (Lupinus varicolor), trailing blackberry, pearly everlasting,
common velvetgrass (Holcus lanatus), and California oatgrass (Danthonia
californica) are common associates [58].

Soil:  Salal grows on a variety of mineral and organic substrates
including shallow rocky soils, sand dunes, coarse alluvium, glacial
till, and peat [45,56].  Growth is generally best on moist sandy or
peaty soils where salal occurs as a vigorous upright shrub [45].  Salal
grows on nutrient poor to moderately rich soils [45,79].  On shallow,
droughty soils, plants may assume a matlike growth form.  Salal commonly
grows on decaying wood and stumps and can grow as an epiphyte on living
trees in extremely humid areas [45].  It occurs on soils derived from a
wide range of parent material including diorite, breccia and basalt,
serpentine, granite, and metamorphic rock [51,114,138,139].

Climate:  This shrub grows in hypermaritime to maritime zones
characterized by cool, humid to perhumid, mesothermal climate [78,79].
Winters are typically mild with little snow accumulation [45].  Plants
are dwarfed in drier areas [138].  Salal reaches greatest size and
abundance in the fogbelt along the Pacific Coast [129].  Plants are
sensitive to frost [45].

Elevation:  Salal typically grows at low to intermediate elevations.
Elevation by geographic location is as follows [45,98]:

                  > 2,500 feet (> 763 m) in CA
                  0 to 2,624 feet (0-800 m) in s coastal BC
                  < 33 to 116 feet ( less than 100-200 m) in n coastal BC

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Key Plant Community Associations

More info for the terms: association, succession, vine

Salal grows as an understory dominant in a variety of lowland to
montane, coniferous or mixed evergreen forests.  Common overstory
dominants include Douglas-fir (Pseudotsuga menziesii), western hemlock
(Tsuga heterophylla), Sitka spruce (Picea sitchensis), lodgepole pine
(Pinus contorta), western redcedar (Thuja plicata), tanoak (Lithocarpus
densiflorus), and Pacific silver fir (Abies amabilis).  Evergreen
huckleberry (Vaccinium ovatum), red huckleberry (V. parvifolium), Sadler
oak (Quercus sadleriana), rhododendron (Rhododendron spp.), vine maple
(Acer circinatum), oceanspray (Holodiscus discolor), bracken fern
(Pteridium aquilinum), dwarf Oregon grape (Mahonia nervosa), salmonberry
(Rubus spectabilis), California hazel (Corylus cornuta), western
swordfern (Polystichum munitum), deerfern (Blechnum spicant), threeleaf
foamflower (Tiarella unifoliata) are common understory codominants.
Salal is listed as a dominant or indicator in the following
publications:

Forest types of the North Cascades National Park Service Complex [1]
Description and classification of the forests of the upper Illinois
  River drainage of southwestern Oregon [4]
Forest associations and secondary succession in the southern Oregon
  coast Range [8]
Plant communities and environmental interrelationships in a portion of
  the Tillamook Burn, northwestern Oregon [9]     
Classification of montane forest community types in the Cedar River
  drainage of western Washington, U.S.A. [26]
Vegetation of the Douglas-fir region [34]
Plant association and management guide for the western hemlock zone: Mt.
  Hood National Forest [51]
Plant association and management guide for the Pacific silver fir zone,
  Mt. Hood and Willamette National Forests [60]
Plant association and management guide: Willamette National Forest [62]
Indicator plants of British Columbia [79]
Biogeoclimatic ecosystem classification of British Columbia [108]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Ecosystem

More info on this topic.

This species is known to occur in the following ecosystem types (as named by the U.S. Forest Service in their Forest and Range Ecosystem [FRES] Type classification):

   FRES20  Douglas-fir
   FRES24  Hemlock - Sitka spruce
   FRES27  Redwood
   FRES28  Western hardwoods

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Cover Types

More info on this topic.

This species is known to occur in association with the following cover types (as classified by the Society of American Foresters):

   221  Red alder
   224  Western hemlock
   225  Western hemlock - Sitka spruce
   226  Coastal true fir - hemlock
   227  Western redcedar - western hemlock
   228  Western redcedar
   229  Pacific Douglas-fir
   230  Douglas-fir - western hemlock
   231  Port Orford cedar
   232  Redwood
   234  Douglas-fir - tanoak - Pacific madrone

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Plant Associations

More info on this topic.

This species is known to occur in association with the following plant community types (as classified by Küchler 1964):

   K001  Spruce - cedar - hemlock forest
   K002  Cedar - hemlock - Douglas-fir forest
   K006  Redwood forest
   K029  California mixed evergreen

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Associations

Foodplant / saprobe
embedded, then erumpent apothecium of Coccomyces leptideus is saprobic on dead twig of Gaultheria shallon

In Great Britain and/or Ireland:
Foodplant / pathogen
Phytophthora inflata infects and damages Gaultheria shallon

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

General Ecology

Fire Management Implications

More info for the terms: cover, fire severity, fuel, severity

High intensity burns are more effective in delaying the recovery of
salal than moderate intensity burns.


2nd CASE STUDY:


FIRE CASE STUDY CITATION:
Tirmenstein, D., compiler. 1990. Effects of slash burning on salal on eastern Vancouver
Island, British Columbia. In: Gaultheria shallon. In: Fire Effects Information
System, [Online]. U.S. Department of Agriculture, Forest Service,
Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).
Available: http://www.fs.fed.us/database/feis/ [
var months = new Array(12);
months[0] = "January";
months[1] = "February";
months[2] = "March";
months[3] = "April";
months[4] = "May";
months[5] = "June";
months[6] = "July";
months[7] = "August";
months[8] = "September";
months[9] = "October";
months[10] = "November";
months[11] = "December";
var date = new Date();
var year = date.getFullYear();
var month = date.getMonth();
var day = date.getDate();
document.write(year+", "+months[month]+" "+day);
].

REFERENCE :
Vihnanek, R. E.; Ballard, T. M. 1988. Slashburning effects on stocking, growth,
and nutrition of young Douglas-fir plantations in salal-dominated ecosystems of
east Vancouver Island.  Canadian Journal of Forest Research. 18: 718-722. [131].

SEASON/SEVERITY CLASSIFICATION:
not reported/low to high

STUDY LOCATION:
The study site was located on the east side of Vancouver Island, British
Columbia.

PREFIRE VEGETATIVE COMMUNITY :
Sites are in the wet and dry, coastal western hemlock (Tsuga
heterophylla) subzone.  The understory was dominated by salal.  Each
site supported planted 5- to 10-year-old Douglas-fir (Pseudotsuga
menziesii), some of which had been burned.

TARGET SPECIES PHENOLOGICAL STATE :
not reported.

SITE DESCRIPTION:
Soils:  Brunisols or podzols developed in till, overlying volcanic or
        sedimentary bedrock. 
Slope:  0 to 60 percent. 
Elevation:  1,650 to 2,650 feet (500-800 m). 
Climate:  average annual water deficit - 4.2 to 5.2 inches (106-133 mm).
          mean annual temperature - 41 to 47 degrees F (5.4-8.7 degrees
          C).

FIRE DESCRIPTION:
Fire severity was estimated on the basis of remaining fuels and percent
exposed mineral soil.  Fire severity ranged from low to high and was defined
as follows:

high - absence of all fine and most medium (3-9.5 cm diameter) fuels,
      considerable consumption of large fuels and stumps and a large
      difference in percent mineral soil exposure between paired burned and
      unburned plots (15-60 percent).

moderate - intermediate fuel characteristics, small to moderate difference in
      paired mineral soil exposure (0-5 percent) between burned and unburned
      plots.

low - fine fuels present (< 2.5 cm in diameter), minimal charring of large
      fuels (> 10 cm diameter) and stumps; small difference (0-4 percent) in
      percent mineral soil exposed on burned and unburned areas.

FIRE EFFECTS ON TARGET SPECIES :
site burn       salal cover             height              exposed mineral
#    sever-         (%)                 (cm)                soil (%)
     ity*      burned   unburned    burned   unburned      burned  unburned

1    H           16        55         15        28           26       0
2    H           16        54         20        29           15       0
3    M           25        44         18        35            5       1
4    H            4        70         16        49           60       0
5    H            9        44         18        32           31       2
6    H            5        41         18        22           24       0
7    H            9        47         14        28           36       5
8    H            7        55         14        34           25       0
9    L           16        25         28        21            6      10
10   H            6        15         23        24           39      24
11   M           15        40         22        32            4       0
12   M           26        32         25        23            2       4
13   M           41        64         26        36            0       0
14   M           34        52         23        36            6       0
15   L           47        60         31        34            4       0
16   L           15        26         21        21            3       0
17   L           30        63         17        25            6       3
18   L           24        54         16        23            1       1
19   M           19        38         20        25           11       1
20   L           40        51         26        30            1       0

 *L - low severity
  M - moderate severity
  H - high severity

FIRE MANAGEMENT IMPLICATIONS:
Salal cover and height growth can be significantly reduced by burning
with corresponding increases in the height growth of Douglas-fir
seedlings.  Vihnanek and Ballard [131] note that "results [of this
study] suggest that slashburning should remain as a site preparation
option in the dry salal-dominated forest ecosystems of eastern Vancouver
Island.  However, it would be inappropriate to extrapolate the results
of this study to other kinds of ecosystems."

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Site Description

Elevation:  500 feet (152 m).
Parent materials:  bedrock was composed of quartz diorite and diorite,
                   overlain with glacial till, outwash and minor
                   lacustrine and aeolian deposits.
Soils:  mixture of colluvium, loess, and ablation till, loamy with mixed
        gravel throughout.  Climate:  marine and cool, no distinct dry
        season.  An average of 203 frost-free days per year.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Fire Management Considerations

More info for the terms: competition, cover, fire intensity, severity

Timber harvest:  Evidence indicates that postfire recovery of salal on
some harvested sites may be delayed by slash-burning [94,131].  Recovery
may be particularly slow after hot slash burns on dry sites with shallow
soil [45].  Fire can thus be used to control salal on dry sites but is
often ineffective on wet sites [57].  Slash burning in Douglas-fir
plantations of eastern Vancouver Island reduced the height and cover of
salal while improving the nutrient status of Douglas-fir [131].  Often
the moderate fires that reduce salal produce a positive response in
conifer seedlings.  Where slash burning is contemplated, plots should be
burned immediately after timber harvest for best results.  Because slash
burns delay but do not eliminate salal, it is important that sites are
planted within 2 years after logging and fire [16].

While slash burns often aid conifer regeneration, in some locations
salal cover is not significantly reduced and competition remains a
considerable problem.  Factors such as site characteristics, community
composition, and fire intensity and severity are all important
influences.  In old growth Douglas-fir forests of the western Cascades,
salal may triple in cover during the first 5 years after logging and
slash burn as shown below [31]:

          1962       1963     1964     1965     1966     1967      1968
         before     1st yr.   1st yr.  
         logging    after     after
                    logging   slash burn

%cover     5.9       1.1       0.5     1.3      1.6       2.2       3.0
%freq.    20.2       5.8       4.0     5.8      6.4       7.7       9.5

Response of salal after timber harvest and subsequent slash burns has
been examined by a number of researchers [30,31,70,71,97,119,122,131,
140].

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Plant Response to Fire

More info for the terms: cover, rhizome, severity

Vegetative response:  Salal typically sprouts readily from the roots,
rhizomes, or stem base after light to moderate fires [5,16,79].  Fires
of light to moderate intensity stimulate sprouting, but more intense
fires can damage underground regenerative structure and reduce or
eliminate sprouting [45].

Seed:  Postfire reestablishment through seed appears to be relatively
unimportant in salal [47].

Postfire recovery:  Recovery of salal varies according to fire intensity
and severity [48].  Rhizome expansion can be rapid [136] or relatively
slow depending on the amount of damage received [57,140].  Plants are
often observed soon after fire [68,76,82] but may only develop slightly
during the first year [68].  Following a moderate burn in British
Columbia, salal was present during the first growing season and
increased in abundance by the third growing season [82].  However, few
plants were observed during the first growing season after an intense
fire in the same area [82].  By the 3rd year after this fire, only
small, scattered colonies of salal were present [82].  Bailey [8]
observed increases in cover by the 8th year after logging and fire in
western Oregon.  Salal can become dominant within 10 years after fire in
parts of British Columbia [102].  Salal can reach 2 to 3 feet (0.6-0.9
m) in height by the tenth growing season after fire [112].  Recovery was
documented as follows after logging and fire in the Oregon Coast Range
[122]:

                  before burn             1 year after burn
            orig.       seedlings         orig. stems       seedlings
            stems                         + sprouts
                             (# per acre)

N-aspect     250             0                640                 0
S-aspect   2,840             0             15,960                 0

Following fire in British Columbia, cover reached 18 percent after 2
years and had increased to 55 percent with 8 years [141].  However, 4
years after intense summer wildfires in the North Cascades of
Washington, cover of salal on two sites ranged from 0.7 to 1 percent
[93].

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Post-fire Regeneration

More info for the terms: rhizome, shrub

   Tall shrub, adventitious-bud root crown
   Rhizomatous shrub, rhizome in soil

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Fire Ecology

More info for the term: climax

The shade-tolerant salal appears well able to persist under a regime of
relatively infrequent fires.  Long fire-free intervals are common in
many climax coastal coniferous forests of the Pacific Northwest [60].
Fire occurs infrequently in most coastal western hemlock forests due to
marine climatic influences [5].  Western hemlock-Douglas-fir forests
codominated by salal and dwarf Oregon grape commonly burn at
approximately 320-year intervals [105].  Fire intervals in
tanoak-salal/dwarf Oregon grape communities of the western Siskiyous
have been estimated at 60 years [5].  While inland redwood forests burn
every 26 to 52 years, coastal redwood forests experience fires at 50 to
500-year intervals [123].  In western Oregon, Douglas-fir/oceanspray
-salal communities are common on sites which have been lightly burned
during the past 200 years.  Salal, because of its prolific sprouting
ability, can also survive shorter fire-free intervals.  In western
Oregon, bracken fern-salal communities commonly develop on frequently
burned sites [8].

Salal generally sprouts from the roots, rhizomes, or stem base after
aboveground vegetation is damaged or consumed by fire.  Birds and
mammals may disperse some seed from off-site.  Limited reestablishment
through seed may occur, although vegetative regeneration is apparently
the dominant mode of reestablishment [47].

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Successional Status

More info on this topic.

More info for the terms: climax, codominant, cover, density, eruption, fern, shrub

Salal is a residual species which persists on many types of newly
disturbed sites [31,36,47,71].  It can rapidly colonize open areas,
particularly on undisturbed soil [15,31] and appears well adapted for
"opportunistic survival in ...changing canopy gaps" [15].  Salal
commonly increases in abundance and cover on clearcuts in old growth
western hemlock and western hemlock-western redcedar forests of the
Northwest [136].  Typically, it is initially much reduced by logging and
postharvest fires but recovers dramatically [47].  Salal is a common
constituent of persistent seral brushfields and can remain dominant for
25 years [36] or more.  The shrub was observed on mudflow channels,
buried roadbanks, blowdown, and scorch sites soon after the eruption of
Mount St. Helens [49,91].

Douglas-fir-western hemlock: Salal grows in early seral to climax stands
in Douglas-fir-western hemlock forests and in coastal western hemlock
forests of the Northwest [42,55,56,78].  Weedy invaders such as
groundsel (Senecio spp.), fireweed (Epilobium angustifolium), pearly
everlasting (Anaphalis margaritacea), and bracken fern are common
dominants during the first three growing seasons after fire or other
disturbances [61,82,84].  Subsequent recovery of salal is commonly rapid
[8] with this shrub assuming prominence within 3 to 5 years after
disturbance [39,122].  According to Bunnell, 85 percent of the space
that will be occupied by salal is occupied within 3 years [15].  By year
8, salal can fully occupy the belowground environment [143] and
continues to increase as fireweed declines [8].  By the 10th growing
season, salal may reach 2 to 3 feet in height [112].  In western
Washington, salal commonly increases in density as second growth
conifers begin to overtop the shrub layer [14].  Salal commonly shares
dominance with dwarf Oregon grape during postdisturbance years 7 to 50
in the Oregon Coast Range [8].

Salal is a principal understory species in many Douglas-fir forests of
the Olympic Mountains where it dominates 65- to 90-year-old and
300-year-old stands [34].  It is common in second growth Douglas-fir
stands of the Oregon Coast Range [8] and northeastern Olympic Mountains
of western Washington [105], but in some areas, it may be sporadic or
absent in the shaded understory of immature, closed canopy stands [79].
Salal can attain temporary dominance approximately 22 years after
disturbance [84].  Salal commonly attains peak abundance in middle-late
to late seral stages following fire [47].  As the overstory develops
further, cover gradually declines [84].  Cover of salal by stand age has
been documented as follows in western Washington [84]:

            stand age (years)
            (percent ground cover) -

      5      22     30      42      73

   12.22   65.26   44.56   43.72   30.90

Cover was documented as follows in a Douglas-fir-western hemlock forest
of western Cascades of Oregon [115]:

                              years (percent cover)

       2     5     10     15     20     30     40    undist. old growth

     7.37   1.41   10   8.52   9.93   17.74  14.97         7.37

Salal commonly persists as an understory dominant or codominant in
relatively dry Douglas-fir forests of British Columbia [79] and the
Pacific Northwest [5].  However, many moist northwestern Douglas-fir
forests are seral to western hemlock types, and with time, the
composition of the overstory gradually shifts from Douglas-fir to
hemlock or cedar-hemlock [39].  True climax status may not be reached
for several hundred years [84].  In climax stands, the herbaceous layer
is often depauperate [8].  Salal and dwarf Oregon grape are often the
only two species with more than 1 percent cover [8].  Salal is a common
understory dominant in climax western hemlock-western redcedar forests
[8] and in coastal western hemlock forests [78] but may be absent in
mature western redcedar forests of coastal British Columbia [79].

Port-Orford-cedar:  Salal occurs in seral to climax stands in
Port-Orford cedar communities [5].  It occurs as an understory dominant
in drier Port-Orford-cedar forests of the Siskiyou Mountains [6].

Redwood, Sitka spruce:  Salal commonly increases after logging in
redwood [11] and Sitka spruce [2] forests.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Regeneration Processes

More info for the terms: adventitious, cover, layering, litter, natural, rhizome

Salal is capable of reproduction from seed and vegetative regeneration.
However, seedling establishment is apparently insignificant where plants
are already established.  Additional expansion of existing clones occurs
through layering, sprouting of rhizomes, root suckering, and sprouting
from the stem base [45].

Seed:  Good seed crops are produced regularly, except under a dense
forest canopy where little or no seed is produced [45].  In a British
Columbia study, only 8.7 percent of all twigs produced flowers, and no
flowers were noted where the canopy cover exceeded 33 percent.
Flowering beneath a forest canopy was limited to shoots more than 4
years of age.  Plants that flowered were, on the average, larger and
more vigorous than those that did not.  Flowering characteristics were
documented as follows [15]:

                  age of shoot (years)
                        < or = 4       5        6        7        8    
flowering/total
      shoots                0/13      5/37     8/53     2/7       3/10
      new twigs             0/15     20/139   13/200   14/81     16/288
length of flowering
      twig (cm)             ----      9.1     7.3      6.6       5.5
# of flowers per twig       ----      6.6     6.6      5.9       5.5
                 
Salal flowers are pollinated by insects such as bees and flies [45].
Seeds are dispersed by a variety of birds and mammals [45,118].
Evidence suggests that seeds consumed by bears may germinate more
readily than uneaten seeds [102].

Germination:  Germination of salal is generally good under laboratory
conditions, with up to 73 percent of the seed eventually germinating
[28,80].  In other laboratory tests, average germination of 27 to 35
percent has been reported [45].  Stratification is not essential for
germination [95], but periods of light (at least 8 hours per day), are
[28].  In laboratory tests, seeds typically begin germinating within 27
[95] or 30 to 45 days [129].  Viability in storage appears limited
[106].  Germination capacity declined from 31 to 21 percent after 1 year
in storage at 40 degrees F (4 degrees C) but averaged 73 and 27 percent
after 3 years in storage at 40 degrees F (4 degrees C) and room
temperature, respectively [28].

Seedling establishment:  Potential for reproduction from seed appears
poor under natural conditions [47,102].  Few seedlings establish despite
the large numbers that germinate.  Seedling establishment may be limited
to favorable microsites or to periods of unusual weather conditions
[102].  Initial seedling growth is slow [45].  Seedlings may require 2
to 3 years to reach 3 to 5 inches (8-13 cm) in height [80].  Early
seedling growth is favored by moist, acidic conditions and partial shade
[28].

Seed banking:  Seed remains viable for several years when properly
stored, but viability is probably much lower under natural conditions
[45].  Kellman [74] sampled soil and litter from beneath 100-year old
Douglas-fir-western hemlock stands in coastal British Columbia.  Core
samples were divided into an upper layer, 0 to 2 inches (0-5 cm), and
lower layer, 2 to 4 inches (5-10 cm).  Although seed was found in only 1
out of 34 cores, subsequent establishment did occur in laboratory tests
[74].  Seed banking, although possible, is presumably a relatively
unimportant regenerative strategy in salal.

Vegetative regeneration:  Salal sprouts prolifically from roots,
rhizomes, underground stems, and the stem base after disturbances which
damage or remove aboveground plant parts [80,102,106,121], and expands
through spreading roots and rhizomes in the absence of disturbance
[24,102,106].  Layering, rooting at the stem nodes, and spread through
stolons has also been reported [24,28].  Stems which are forced into the
organic mat typically generate adventitious roots.  Salal plants are
often made up of several individual aboveground shoots connected
belowground by several meters of rhizomes [15].

Vegetative regeneration occurs under either a sparse or dense overstory
canopy, and where canopy cover exceeds 33 percent, represents the only
mode of regeneration.  Plants growing beneath a sparse overstory
produced an average of 0.21 shoots per plant per year while those
beneath a closed canopy generated 11 new shoots per plant per year.
However, shoots typically live longer (10.33 years) beneath a sparse
overstory canopy than beneath a closed canopy (6.25 years).  As the
overstory canopy becomes more dense, investment in rhizome extension
increases.  This expansion could represent an "escape from shading"
under conditions of changing canopy gaps.  Bunnell notes that "under
canopy, the spatial pattern of...shoots was better adapted to maintain
plant persistence than to colonize new areas" [15].  Messier and others
report that plants allocate greater energy to the rhizomes as they
mature [92].  Bunnell observed that vegetative regeneration typically
declines with increasing age (> 3 years) [15].  No new shoots were
produced by plants 9 years or older.  Early sprout growth may be slow.
Plants may need as long as 5 years to regenerate stems and produce
aboveground growth [80].

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Growth Form (according to Raunkiær Life-form classification)

More info on this topic.

More info for the term: phanerophyte

  
   Phanerophyte

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life Form

More info for the term: shrub

Shrub

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Immediate Effect of Fire

Salal is described as a woody survivor [140].  Underground portions of
the plant commonly survive even when aboveground vegetation is consumed
by fire [16,57].  Portions of the stem base also survive many low
severity fires [57].  Hot burns on dry, shallow soil can result in
lethal heat penetration to underground regenerative structures [45].
"Moderate damage" has been reported after light burns [5].

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Season/Severity Classification

Plot 6 - May 22, 1969/high
Plot 7 - September 9, 1968/moderate

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life History and Behavior

Cyclicity

Phenology

More info on this topic.

Salal exhibits variable annual and geographic phenological development.
In a Washington study, bud burst occurred in April, with rapid
vegetative growth occurring from April until early June when growth
peaked [45].

Plants generally flower in late spring or early summer [80] with fruit
ripening from August through October [28,45].  Fruit may persist on the
stem until December [45,138].  Generalized flowering and fruiting dates
by geographic location are as follows:

location          flowering        fruiting          authority

AK                May-June         ----              [130]
BC                June 12-July 4   June-September    [45,83
CA                March-July       ----              [113]
w WA              ----             3rd week of June  [45]
w OR, sw WA       May-July         ----              [50]
Northwest         May-July         ----              [67]    

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Molecular Biology and Genetics

Molecular Biology

Barcode data: Gaultheria shallon

The following is a representative barcode sequence, the centroid of all available sequences for this species.


Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Statistics of barcoding coverage: Gaultheria shallon

Barcode of Life Data Systems (BOLDS) Stats
Public Records: 2
Specimens with Barcodes: 13
Species With Barcodes: 1
Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Conservation

Conservation Status

National NatureServe Conservation Status

Canada

Rounded National Status Rank: NNR - Unranked

United States

Rounded National Status Rank: NNR - Unranked

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

NatureServe Conservation Status

Rounded Global Status Rank: G5 - Secure

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Management

Management considerations

More info for the terms: allelopathy, basal area, competition, cover, density, shrub, tree, vine

Timber harvest:  Salal commonly increases after timber harvest
[2,61,89].  Generally, if present in the understory prior to harvest, it
will also form part of the postdisturbance community [22].  Heavy
thinning can increase salal biomass by up to 2.8 times [117].  The
effects of timber harvest on salal have been examined in a number of
studies [8,30,31,57,70,71,73,79,94,112,115,131].

Competition:  Salal competes vigorously with conifer regeneration in
some locations [79].  On moist sites, this shrub commonly competes with
Douglas-fir, Sitka spruce, and western hemlock, and to a lesser degree
with western redcedar [143].  In general, the nutrient-demanding Sitka
spruce is most harmed by competition with salal [89], but salal can also
significantly reduce the basal area and stocking of Douglas-fir
seedlings on some sites [16].  In some areas, salal vigorously competes
with Douglas-fir for both water and nutrients [15,41,104] resulting in
poor seedling growth [134].  In many problem areas, soil moisture
deficits are common during the growing season, and competition for
moisture may be of primary significance [109].  Competition is often
pronounced in drier low elevation forests of coastal British Columbia
where dense thickets of salal commonly form on cutover sites [24,42].
Growth of forest crop trees is commonly reduced at approximately 6 to 8
years after planting in coastal Sitka spruce-western hemlock-western
redcedar, and western hemlock forests where a dense ground cover of
salal is present [92,134].  This growth check period may be due to the
direct effects of competition with salal or allelopathy associated with
this ericaceous shrub [134].  Anderson [3] reports that a dense growth
of salal can also inhibit regeneration of maples (Acer spp.), as samaras
are physically prevented from reaching the forest floor [3].

On some sites in western Washington, salal may actually add nutrients to
the soil and apparently has no adverse effect on the growth of
Douglas-fir [45,79].  Klinka and others [79] report that the amount of
nitrogen tied up by salal is relatively small and is not likely to be
critical for tree growth except on very poor sites.  In some areas,
conifer regeneration is typically better on sites dominated by salal
than on sites dominated by western swordfern or vine maple [29].

Still, much research has focused on ways to eliminate salal to improve
conifer regeneration.  Recommendations for minimizing salal competition
with conifer seedlings include [89]:

           (1) preventing fires on naturally regenerated clearcuts
           (2) preparing seedbeds to encourage prompt natural
               regeneration
           (3) planting seedlings immediately after timber removal;           
               adding fertilizers where necessary

Successive light treatments may be preferable to a single heavy tree
removal [104].  When thinning, particular care should be taken to avoid
creating large gaps in the canopy [104].  It may be desirable to
maintain greater stand density on dry sites with salal present [104].
Competition between conifer seedling and salal occurs largely below
ground [16], and seedlings should be planted as early as possible after
timber harvest to allow seedlings a "head start" [16].  In some areas,
planting densities necessary to shade out salal quickly are
impractically high [16].  Models have been developed which explore the
effects of salal competition on the growth of various conifer seedlings
[88].  The effects of competition have been considered in detail
[16,41,88,89,92,104,135,136,142,143].  However, in many instances,
elimination of salal is difficult, uneconomical, or impractical.
Bunnell [15] reports that "...attempts to reduce salal abundance may be
unwarranted; the species appears well adapted to persist."

Chemical control:  Salal is resistant to many herbicides including
2,4-D, velpar, 2,4,5-T, amitrole, picloram, and silvex [12,106,120].
Site characteristics [24,41] and season and mode of application can
greatly influence the response of salal to herbicides [121].  Repeated
application of Garlon is effective although often impractical [24] or
prohibitively expensive.  Silvex can also be relatively effective in
reducing cover when properly applied [121].  Salal appears to be most
susceptible to foliage sprays in diesel oil carriers when applied at
budbreak [121].  Plants are less seriously damaged by herbicides applied
late in the growing season or by those applied in water or oil-in-water
emulsions [121].  In test applications, few of the damaged salal plants
were actually killed by herbicides, and recovery was generally rapid
[121].  However, herbicides can sometimes produce sufficient control for
conifer release [121].  Detailed information on the response of salal to
herbicides is available [12,17,21,24,45,120,121].

Mechanical removal:  Various types of mechanical removal or soil
disturbance can stimulate sprouting of salal and produce increased cover
[45].  As rhizomes are broken, new plants commonly form [15].  Harvest
techniques which disrupt rhizomes, such as the use of skidders, can
produce additional management problems by fostering the spread of salal
[15].  In coastal British Columbia, spot scarification appears to be
relatively ineffective in producing long-term control of salal [24].
Pretreatment levels can be reached by the third growing season [24].
Blade scarification was more effective, reducing cover to 6 percent but
resulted in significant site degradation [24].  Details on mechanical
treatments are available [24,41,135,136].

Biomass:  In general, aboveground biomass of salal appears to be
inversely proportional to the amount of overstory foliage [85]:

                              stand age
                              (years)
                      22          30          42          73

salal
biomass (kg/ha)   6300.6      4112.2      3394.0      1010.2

Heavy fertilizer application can decrease the aboveground biomass of
salal [117].

Wildlife:  Salal fruit production may be limited beneath a closed canopy
[15].  Disturbances which eliminate portions of the overstory presumably
increase fruit production.  Where management goals are aimed at
increasing winter big game forage, evidence suggests that salal will
respond favorably to thinning [15].

Research indicates that mountain lion, coyote, and wolf urine can be
used to inhibit or stop deer use of salal browse [124].

Livestock:  Salal is susceptible to trampling damage [102].

Chemical composition:  Evidence suggests that salal may be somewhat
allelopathic [25,136,141].  The foliage and roots of salal are resistant
to decay and can reduce decomposition and water availability [79].

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Relevance to Humans and Ecosystems

Benefits

Other uses and values

More info for the terms: cover, fresh

Fruit of salal was traditionally utilized by many native peoples of the
Northwest [101].  The spicy fruit was eaten fresh, dried, or mashed into
cakes [28,50,130].  Leaves were dried, mixed with
kinnikinnick
(Arctostaphylos spp.) and smoked [28,50].  Teas made from the leaves
were used to treat coughs, tuberculosis, and diarrhea [50].

Salal is cultivated as an ornamental.  Plants are used in landscaping
[50] and serve as an excellent ground cover [66].  Salal can be used to
attract wildlife species to backyard gardens [80].  The attractive
foliage is used by florists under the name "lemon leaf" as an addition
to cut flowers [28,87,113].

The sweet, "bland but pleasant" fruit can be used alone or mixed with
other wild berries to make jellies or preserves [28,80].  Approximately
8 minutes of harvesting is required to collect 0.44 pint (250 ml) of
fruit [83].  Many species of Gaultheria contain oil of wintergreen and
can be used as flavoring agents [113].

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Value for rehabilitation of disturbed sites

More info for the terms: cover, layering

Once established, salal spreads aggressively and is well-suited for use
as a ground cover on erosive banks, roadcuts, highway right-of-ways, and
other types of reclaimed ground [80,129].  It can also aid in
stabilizing coastal dunes and in protecting vulnerable watersheds [28].

Salal may be propagated by seed [28,80].  Cleaned seed averages
3,209,000 per pound (7,068/kg) and remains viable for "moderate periods"
when properly stored [28].  Seed is generally sown in winter or spring
[138].  Seedlings exhibit slow growth, but propagation from seed is
generally the most economical means of growing salal [129].  Seed
collection, handling, and planting methods have been considered in
detail [28,80,129].

Salal can also be propagated vegetatively from root, stem, or rhizome
cuttings, although propagation can be difficult and initial growth slow
[28,129].  Best results are generally obtained from cuttings taken in
late summer [80].  Salal can also be propagated by layering, or from
suckers and stolons [28].  Various modes of vegetative propagation have
been examined in detail [28,80,129].

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Cover Value

More info for the terms: cover, shrub

Salal provides important cover for a variety of wildlife species [27].
Western hemlock/dwarf Oregon grape-salal, western hemlock/vine
maple-salal, and Sitka spruce-salal communities offer good hiding cover
for deer and elk, although dense shrub development can sometime limit
big game use [61,127].  Red huckleberry-salal shrubfields protect
black-tailed deer from winter winds [65].

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Nutritional Value

Browse:  The nutrient content of salal browse varies according to plant
part and with the stage of phenological development.  However, in
general browse has relatively low nutritional value.  Black-tailed deer
which fed exclusively on salal browse exhibited signs of malnutrition
[64].  Nutrient content has been documented as follows [14,111]:

crude       ether       crude       N-free      total       Ca
protein     extract     fiber       extract     ash
                              (percent)  
6.75         5.19       21.78        58.23      6.65        1.203

Mg          K           PO4
0.434       0.572       0.272

                  average percent weight -

                  N      P       Mg    Ca     Na         K             

stem             .25     .05     .05   .18    .0010     .24
foliage          .81     .08     .21   .81    .0030     .40

Fruit:  Nutrient value of salal fruit is listed below [101]:

            kjoules     calories    protein   carbo.    ash     lipid  
            x 1,000                 (g)         (g)     (g)     (g)

fresh       15.52        3.71       0.13      0.79      0.03     0.05
dried       14.69        3.51       0.06      0.88      0.04     0.01

            Ca         Fe         Mg
            (mg)       (mg)       (mg)

fresh       3.77       0.04       0.91
dried       3.44       0.04       0.21

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Palatability

Salal browse is at least moderately palatable to many big game species,
but relatively unpalatable to domestic livestock [128].  In some
locations, leaves are readily eaten by black-tailed deer [23].  Deer
often exhibit a marked preference for tender sprouts on burned-over
sites [113].  Evergreen foliage remains palatable during the winter
months.  Overall palatability of salal has been rated as follows
[64,113,116]:

                        CA            OR             WA

Cattle            poor to useless     ----          ----
Domestic sheep    poor                ----          ----
Horses            useless             ----          ----
Elk               ----                ----          fair
Deer              fair to poor        moderate      ----
Domestic goats    fair to poor        ----          ----

Salal fruit is palatable to a wide variety of birds and mammals.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Importance to Livestock and Wildlife

More info for the term: shrub

Browse:  In many areas, salal is browsed at least moderately by deer and
elk [28,53,113].  However, use varies geographically as well as
seasonally.  Salal is heavily browsed by black-tailed deer on the Queen
Charlotte Islands of British Columbia [45].  Persistent leaves enhance
winter value, and in many areas, including the Oregon Coast Range, salal
is an important winter food for black-tailed deer and mule deer
[14,15,65,100,103].  Deer use is often heaviest when other low-growing
species become covered with snow [64,65].  High elevation stands are
generally not used by deer in winter [64].  Seasonal black-tailed deer
use has been documented as follows in western Washington [14]:

                  percent total volume

Jan.  Feb.   March  April  May  June  July  Aug.  Sept.  Oct.  Nov.   Dec.
30.4  12.3   15.2   12.9   1.1  0.5   3.9   17.2  1.0    5.1   --     27.6

Roosevelt elk consume some salal browse, particularly during the winter
months [8,53].  Light to moderate elk use has also been reported during
fall and spring in some areas [116], but elsewhere, browse may be
ignored during spring and summer [53].  Winter elk use may occasionally
be locally heavy [116].  Salal is considered an important "emergency"
food in some locations [128].

Small mammals such as the mountain beaver also feed on salal [128].
This shrub is a preferred food of the mountain beaver in parts of the
western Cascades [68].  Leaves make up a small portion of the
white-footed vole's July diet in parts of Oregon [133].

In some areas, domestic sheep and goats browse salal [113].

Fruits and flowers:  Salal fruit is readily eaten by many birds and
mammals [67].  The band-tailed pigeon, wrentit, ruffed, spruce, and blue
grouse, and numerous songbirds feed on "berries" when available
[28,87,138].  In some areas, blue grouse chicks exhibit a marked
preference for salal fruit, and both chicks and adults consume large
numbers during July and August [77].  Some hummingbird use of flowers
has also been reported [107].  Black-tailed deer of western Washington
consume the flowers of salal [14].  Mammals such as the red squirrel,
black bear, black-tailed deer, Townsend's chipmunk, and Douglas'
squirrel also feed on salal fruit [45,87].

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Wikipedia

Gaultheria shallon

"Salal" redirects here. For other uses, see Salal (disambiguation).

Gaultheria shallon is a leathery-leaved shrub in the heather family (Ericaceae), native to western North America. In English, it is known as salal, shallon, or simply Gaultheria in Britain.

Description[edit]

The finely and sharply serrate leaves are shiny and dark green above.

Gaultheria shallon is 0.2 to 5 metres (0.66 to 16.40 ft) tall, sprawling to erect. Evergreen, its thick, tough, egg-shaped leaves are shiny and dark green on the upper surface, and rough and lighter green on the lower. Each finely and sharply serrate leaf is 5 to 10 centimetres (2.0 to 3.9 in) long. The inflorescence consists of a bracteate raceme, one-sided, with 5 to 15 flowers at the ends of branches. Each flower is composed of a deeply five-parted, glandular-haired calyx and an urn-shaped pink to white, glandular to hairy, five-lobed corolla, 7 to 10 millimetres (0.28 to 0.39 in) long. The reddish to blue, rough-surfaced, hairy, nearly spherical fruit is 6 to 10 millimetres (0.24 to 0.39 in) in diameter.[1]

Ecology[edit]

Gaultheria shallon is tolerant of both sunny and shady conditions at low to moderate elevations. It is a common coniferous forest understory species and may dominate large areas. In coastal areas, it may form dense, nearly impenetrable thickets. It grows as far north as Baranof Island, Alaska.[1] Western poison oak is a common associate in the California Coast Ranges.[2]

Edibility[edit]

Ripe berries of the salal plant, Gaultheria shallon

Its dark blue berries and young leaves are both edible and are efficient appetite suppressants, both with a unique flavor. Gaultheria shallon berries were a significant food resource for native people, who both ate them fresh and dried them into cakes. They were also used as a sweetener, and the Haida used them to thicken salmon eggs. The leaves of the plant were also sometimes used to flavor fish soup.[1]

More recently, Gaultheria shallon berries are used locally in jams, preserves and pies.[1][3] They are often combined with Oregon-grape because the tartness of the latter is partially masked by the mild sweetness of Gaultheria shallon.

Europe[edit]

Gaultheria shallon was introduced to Britain in 1828 by David Douglas, who intended the plant to be used as an ornamental.[1] There, it is usually known as shallon, or, more commonly, simply Gaultheria, and is believed to have been planted as cover for pheasants on shooting estates.[citation needed] It readily colonises heathland and acidic woodland habitats in southern England, often forming very tall and dense evergreen stands which smother other vegetation. Although heathland managers widely regard it as a problem weed on unmanaged heathland, it is readily browsed by cattle (especially in winter), and so where traditional grazing management has been restored the dense stands become broken up and the plant becomes a more scattered component of the heathland vegetation.

Etymology[edit]

Both salal and shallon are presumed to be of Native American origin: the former from Chinook Jargon sallal,[4] and the latter from a native word whose pronunciation was recorded by Lewis and Clark as "shelwel, shellwell".[5] The genus Gaultheria was named by Pehr Kalm for his guide in Canada, fellow botanist Jean-François Gaultier.[6]

Medicinal properties[edit]

Gaultheria shallon has been used for its medicinal properties by local natives for generations. The medicinal uses of this plant are not widely known or used. However, the leaves have an astringent effect, making it an effective anti-inflammatory and anti-cramping herb. By preparing the leaves in a tea or tincture, one can take the herb safely to decrease internal inflammation such as bladder inflammation, stomach or duodenal ulcers, heartburn, indigestion, sinus inflammation, diarrhea, moderate fever, inflamed / irritated throat, and menstrual cramps. A poultice of the leaf can be used externally to ease discomfort from insect bites and stings.[7]

Economic use[edit]

In the Pacific Northwest, the harvesting of Gaultheria shallon is the heart of a large industry which supplies cut evergreens worldwide for use in floral arrangements. It is used in native plant gardens.

References[edit]

  1. ^ a b c d e Jim Pojar and Andy MacKinnon, ed. (2004). Plants of the Pacific Northwest Coast (Revised ed.). Vancouver: Lone Pine Publishing. p. 53. ISBN 978-1-55105-530-5. 
  2. ^ C.Michael Hogan (2008) Western poison-oak: Toxicodendron diversilobum, GlobalTwitcher, ed. Nicklas Stromberg [1]
  3. ^ Clarke, Charlotte Bringle (1978). Edible and Useful Plants of California. University of California Press. ISBN 978-0-520-03267-5. 
  4. ^ salal, Oxford Dictionaries. April 2010. Accessed 2 August 2012.
  5. ^ shallon, Oxford English Dictionary Second edition, 1989; online version June 2012. Accessed 2 August 2012.
  6. ^ Biography of Jean-François Gaultier, Dictionary of Canadian Biography, 1741-1770 (Volume III). Accessed 2 August 2012.
  7. ^ Michael Moore, Medicinal Plants of the Pacific West, illustrated by Mimi Kamp, published by Red Crane Books, Inc. ISBN 1-878610-31-7
Creative Commons Attribution Share Alike 3.0 (CC BY-SA 3.0)

Source: Wikipedia

Unreviewed

Article rating from 0 people

Default rating: 2.5 of 5

Names and Taxonomy

Taxonomy

Common Names

salal
Oregon wintergreen

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

The currently accepted scientific name of salal is Gaultheria shallon
Pursh (Ericaceae) [72].

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!