dcsimg

Untitled

provided by Animal Diversity Web

One very unique feature about the E. aspergillum is that very often you can find some abyssal shrimp within the cavity produced by the lattice structure that makes up the sponge. Sometimes young male and female shrimp enter this cavity while they are still larva and over time they begin to feed and grow. The small shrimp grow and become too large to leave the silicon cavity of the sponge. It is customary in Japanese culture to give this elegant glass sponge away as a wedding gift symbolizing the wedding vow, "Till death us do part" (Jensen,1979).

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Soares, B. 2001. "Euplectella aspergillum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Euplectella_aspergillum.html
author
Beau McKenzie Soares, Fresno City College
editor
Jerry Kirkhart, Fresno City College
original
visit source
partner site
Animal Diversity Web

Conservation Status

provided by Animal Diversity Web

Through researching this invertebrate animal, and not finding a great deal of information I have come to the conclusion that since E. aspergillum is found at such great depths, the status of its population is not known.

US Federal List: no special status

CITES: no special status

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Soares, B. 2001. "Euplectella aspergillum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Euplectella_aspergillum.html
author
Beau McKenzie Soares, Fresno City College
editor
Jerry Kirkhart, Fresno City College
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

No adverse affects recorded.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Soares, B. 2001. "Euplectella aspergillum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Euplectella_aspergillum.html
author
Beau McKenzie Soares, Fresno City College
editor
Jerry Kirkhart, Fresno City College
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

No positive benefits recorded.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Soares, B. 2001. "Euplectella aspergillum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Euplectella_aspergillum.html
author
Beau McKenzie Soares, Fresno City College
editor
Jerry Kirkhart, Fresno City College
original
visit source
partner site
Animal Diversity Web

Trophic Strategy

provided by Animal Diversity Web

E. aspergillum's staple food is microscopic organisms and organic debris. These are filtered out of the water that flows through the sponge. (Britannica.com, 1999-2000).

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Soares, B. 2001. "Euplectella aspergillum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Euplectella_aspergillum.html
author
Beau McKenzie Soares, Fresno City College
editor
Jerry Kirkhart, Fresno City College
original
visit source
partner site
Animal Diversity Web

Distribution

provided by Animal Diversity Web

This sponge species is found in the western Pacific Ocean near the Philippine Islands. Other species in this genus are found in oceans all around the world (Bayer and Owre 1968; Pearse and Buchsbaum 1987; Britannica.com 1999-2000).

Biogeographic Regions: pacific ocean (Native )

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Soares, B. 2001. "Euplectella aspergillum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Euplectella_aspergillum.html
author
Beau McKenzie Soares, Fresno City College
editor
Jerry Kirkhart, Fresno City College
original
visit source
partner site
Animal Diversity Web

Habitat

provided by Animal Diversity Web

This species is found attached to rocky areas of the seafloor. It is found from 100 to 1000 m below the surface, and is most common at depths greater than 500 m (Bayer and Owre, 1968; Coleman 1991; Pearse and Buchsbaum, 1987).

Aquatic Biomes: benthic ; coastal

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Soares, B. 2001. "Euplectella aspergillum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Euplectella_aspergillum.html
author
Beau McKenzie Soares, Fresno City College
editor
Jerry Kirkhart, Fresno City College
original
visit source
partner site
Animal Diversity Web

Morphology

provided by Animal Diversity Web

E. aspergillum is radially symmetric and of moderate size, ranging from 7.5cm up to 1.3m in height. The majority are between 10cm and 30cm tall. The skeleton contains hexactine (six-rayed) siliceous spicules and in addition contains a latticework of fused siliceous spicules. This is where is gets the name "glass sponge" because quite literally it is made of glass, making it the most exquisite example of the class Hexactinellida, but also as precarious and as brittle as glass can be. Surrounding this beautiful skeleton is a net of living tissue called a trabecular net, which is created by the fusion of amoeboid cells called archaeocytes. Within this trabecular net are elongated, finger-like chambers covered in choanocytes, which open into the spongocoel. Choanocytes are another class of cells, they have whip-like flagella that they vibrate in order to move water through the sponge. Both the external and internal surfaces are covered by this trabecular net. The chambers throughout the body are irregular. The end result is a funnel or vase-like shape. Hence the name, 'Venus's-Flower-Basket.' At its base, E. aspergillum has a tuft of elongated spicules that attaches it to the ocean bottom (Buchsbaum and Pearse, 1987; Hickman, Roberts, and Larson 1997; Kaestner 1967).

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Soares, B. 2001. "Euplectella aspergillum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Euplectella_aspergillum.html
author
Beau McKenzie Soares, Fresno City College
editor
Jerry Kirkhart, Fresno City College
original
visit source
partner site
Animal Diversity Web

Reproduction

provided by Animal Diversity Web

"Little is known about their reproduction". Details of reproduction of E. aspergillum are not known, therefore we can only explain the normal forms of reproduction in Porifera in general. Many times when unfavorable conditions occur sponges will resort to asexual reproduction. In marine sponges using asexual reproduction, amoebocytes attach themselves around the deteriorating sponge. Later epithelial cells surround the amoebocytes, and when the deteriorating sponge is all gone a new animal grows from the clump of cells. Some sponges have two sexes, and individuals have only one sex, but it is likely that E. aspergillum is hermaphroditic, producing both male and female gametes at different times. Archaeocytes and choanocytes have both been observed maturing into gametes, and these maturations are similar to those found in higher animals. Sperm enter the sponge through the inhalant current and then fertilize the ova. A carrier cell, an amoebocyte, effects fertilization of the ovum so that not just sperm and ova are involved. Then the carrier cell and the sperm both reach the ovum, and form a cytostome, which engulfs both the carrier cell and sperm. This zygote then goes through radial holoblastic cleavage forming cells all similar in size and shape. Then the embryo forms a free-swimming larva, which eventually develops into the new sponge.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Soares, B. 2001. "Euplectella aspergillum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Euplectella_aspergillum.html
author
Beau McKenzie Soares, Fresno City College
editor
Jerry Kirkhart, Fresno City College
original
visit source
partner site
Animal Diversity Web

Venus' flower basket

provided by wikipedia EN

The Venus' flower basket (Euplectella aspergillum) is a glass sponge in the phylum Porifera. It is a marine sponge found in the deep waters of the Pacific ocean, usually at depths below 500 meters. Like other sponges, they feed by filtering sea water to capture plankton and marine snow.[1] Similar to other glass sponges, they build their skeletons out of silica, which forms a unique lattice structure of spicules. The sponges are usually between 10 cm and 30 cm tall, and their bodies act as refuge for their mutualist shrimp partners. This body structure is of great interest in materials science as the optical[2] and mechanical[3] properties are in some ways superior to man-made materials. Little is known regarding their reproduction habits, however fluid dynamics of their body structure likely influence reproduction and it is hypothesized that they may be hermaphroditic.[4]

Collected specimen of Euplectella aspergillum

Habitat

Venus' flower baskets are found in the western Pacific Ocean nearby the Philippine Islands. Other species of this genus occur throughout oceans around the world, including near Japan and in the Indian Ocean.[4]

This sponge's habitat is on the rocky areas of the benthic seafloor, where it lives and grows connected to hard substrate for its entire life. It can be found from 100 m to 1000 m (330 ft to 3300 ft) below the ocean's surface, and is most common at depths greater than 500 m.[4] More specifically, they tend to anchor in soft sediments due to the nature of their spicules.

Connecting habitat to morphology, this sponge can often be found inhabiting loose, muddy sediments, causing them to develop a structure that would aid them in staying rooted to the sea floor.[5]

Morphology

Closeup of intricate lattice of the Venus' flower basket
Euplectella aspergillum at a depth of 2572 meters

The body is tubular, curved and basket-like and made up of triaxon spicules. The body is perforated by numerous apertures, which are not true ostia but simply parietal gaps. Syconoid type of canal system is present, where ostia communicate with incurrent canals, which communicates with radial canals through prosopyles which, in turn, open into the spongocoel and to the outside through the osculum.

The body structure of these animals is a thin-walled, cylindrical, vase-shaped tube with a large central atrium. The body is composed entirely of silica in the form of 6-pointed siliceous spicules, which is why they are commonly known as glass sponges. The spicules are composed of three perpendicular rays, giving them six points. Spicules are microscopic, pin-like structures within the sponge's tissues that provide structural support for the sponge. It is the combination of spicule forms within a sponge's tissues that helps identify the species. In the case of glass sponges, the spicules "weave" together to form a very fine mesh, which gives the sponge's body a rigidity not found in other sponge species and allows glass sponges to survive at great depths in the water column.

It is speculated that the sponge harnesses bioluminescence to attract plankton.[6] Its lattice shape also allows it to house animals like shrimp while remaining rooted in the ground.

Their peculiar skeletal motifs have been found to have important fluid-dynamic effects on both reducing the drag experienced by the sponge and in promoting coherent swirling motions inside the body cavity, arguably to promote selective filter feeding and sexual reproduction.[7] In a study performed by Italian researcher, a three-dimensional model of Venus' Flower Basket was utilized to simulate the flow of water molecules in and out of its lattice. The researchers found that, while reducing the sponge's drag, it also created minute vortices inside the sponge which facilitated the mixing of its sperm and eggs; additionally, making feeding more efficient for the shrimp living inside of its lattice.[7]

E. aspergillum differs in having anchorate basalia with six teeth, and diactins.[8]

The skeleton of these sponges also contain silica nanoparticles among other biomaterials.[5]

Reproduction

As said in the introduction, little is known about reproduction. Sperm was found in one sample of E. aspergillum, within the connective tissue, and was described as aggregated clusters within very fine, thread-like appendages.[9] This would contribute to the idea of the species being hermaphroditic. While these sponges are sessile, the sperm can be carried by the current and the ova that a different organism retained can be fertilized.[10] It is also suggested that this species reproduces sexually, which can be deduced by the occurrence of their "internal recirculation patterns".[11]

Red Shrimp can be seen encased by the glass sponge

Mutualistic relationship

The sponges are often found to house glass sponge shrimp, usually a breeding pair, who are typically unable to exit the sponge's lattice due to their size. Consequently, they live in and around these sponges, where the shrimp perform a mutualistic relationship with the sponge until they die. The shrimp live and mate in the shelter that the sponge provides, and in return they also clean the inside of the sponge. This may have influenced the adoption of the sponge as a symbol of undying love in Japan, where the skeletons of these sponges are presented as wedding gifts.[12][13][6][14]

Ecology

While there is not much known about the ecology of these sponges, more research has been done on its class, Hexactinellid sponges. Hexactinellids in the Pacific ocean form reefs on the sea floor many of which are extinct now, but thrived in the Jurassic period. The role they play ecologically can be connected to their feeding on plankton in the deep sea, which produces carbon within their environments.[15] Besides this, they can house many animals that reside on the seafloor, including the shrimps mentioned in previous sections.

Ecosystem Role/Other Facts

In a study done with various glass sponges, Venus' Flower Basket was noted to be difficult to extract any further information because of how inaccessible it serves to be. However, when in contact with alkali, these sponges showed a high resistance, which then lead researchers to believe that they potentially contain biomaterials like chitin, that could serve as a structural component to this species. This study suggests that as long as E. aspergillum and similar species are natural composites containing valuable biomaterials, they could be important in biomedicine and future biotechnology.[5]

Anthropomorphic applications

Silica spicules of Euplectella aspergillum

The glassy fibers that attach the sponge to the ocean floor, 5–20 centimetres (2–8 in) long and thin as human hair, are of interest to fiber optics researchers.[2][16] The sponge extracts silicic acid from seawater and converts it into silica, then forms it into an elaborate skeleton of glass fibers. Other sponges such as the orange puffball sponge (Tethya aurantium) can also produce glass biologically. The current manufacturing process for optical fibers requires high temperatures and produces a brittle fiber. A low-temperature process for creating and arranging such fibers, inspired by sponges, could offer more control over the optical properties of the fibers. These nano-structures are also potentially useful for the creation of more efficient, low-cost solar cells. Furthermore, its skeletal structure has inspired a new type of structural lattice with a higher strength to weight ratio than other diagonally reinforced square lattices used in engineering applications.[6][17]

These sponges skeletons have complex geometric configurations, which have been extensively studied for their stiffness, yield strength, and minimal crack propagation. An aluminum tube (aluminum and glass have similar elastic modulus) of equal length, effective thickness, and radius, but homogeneously distributed, has 1/100th the stiffness.[18]

Besides these remarkable structural properties, Falcucci et al. found that their peculiar skeletal motifs deliver important fluid-dynamic effects on both reducing the drag experienced by the sponge and in promoting coherent swirling motions inside the body cavity, arguably to promote selective filter feeding and sexual reproduction.[7][11]

Rao's work on biomimicry in architecture describes the architectural inspiration gleaned from the Venus' Flower Basket structure, notably in connection with Norman Foster's design for Gherkin tower in London.[19]

References

  1. ^ "Are glass sponges made of glass? : Ocean Exploration Facts: NOAA Office of Ocean Exploration and Research". oceanexplorer.noaa.gov. Retrieved 2022-04-11.
  2. ^ a b Keable, Stephen (4 April 2022). "Deepsea Glass Sponge". Australian Museum.
  3. ^ "Secrets of the Venus' Flower Basket" (PDF).
  4. ^ a b c Soares, Beau McKenzie. "Euplectella aspergillum". Animal Diversity Web.
  5. ^ a b c Ehrlich, Hermann (2007). "Sponges as Natural Composites: from biomimetic potential to development of new biomaterials". Porifera Research: Biodiversity, Innovation, and Sustainability.
  6. ^ a b c Renken, Elena (2021-01-11). "The Curious Strength of a Sea Sponge's Glass Skeleton". Quanta Magazine. Retrieved 2022-04-11.
  7. ^ a b c Falcucci, Giacomo; Amati, Giorgio; Fanelli, Pierluigi; Krastev, Vesselin K.; Polverino, Giovanni; Porfiri, Maurizio; Succi, Sauro (21 July 2021). "Extreme flow simulations reveal skeletal adaptations of deep-sea sponges". Nature. 595 (7868): 537–541. doi:10.1038/s41586-021-03658-1. ISSN 1476-4687. PMID 34290424. S2CID 236176161.
  8. ^ Leys, S. P.; Mackie, G. O.; Reiswig, H. M. (2007-01-01), The Biology of Glass Sponges, Advances in Marine Biology, vol. 52, Academic Press, pp. 1–145, doi:10.1016/s0065-2881(06)52001-2, ISBN 9780123737182, PMID 17298890, retrieved 2022-12-05
  9. ^ Schulze, Franz Eilhard (1880). "XXIV.— On the Structure and Arrangement of the Soft Parts in Euplectella aspergillum". Transactions of the Royal Society of Edinburgh. 29 (2): 661–673. doi:10.1017/S0080456800026181. ISSN 0080-4568. S2CID 88186210.
  10. ^ W., R. B.; Bayer, F. M.; Owre, H. B. (April 1968). "The Free-Living Lower Invertebrates". Transactions of the American Microscopical Society. 87 (2): 273. doi:10.2307/3224459. JSTOR 3224459.
  11. ^ a b Falcucci, Giacomo; Amati, Giorgio; Fanelli, Pierluigi; Krastev, Vesselin K.; Polverino, Giovanni; Porfiri, Maurizio; Succi, Sauro (2021-07-22). "Extreme flow simulations reveal skeletal adaptations of deep-sea sponges". Nature. 595 (7868): 537–541. doi:10.1038/s41586-021-03658-1. ISSN 0028-0836. PMID 34290424. S2CID 236176161.
  12. ^ "A deep-sea love story". Schmidt Ocean Institute. Retrieved 2022-04-11.
  13. ^ "Critter of the Week : the venus flower baskets Euplectellidae". NIWA. 2014-11-06. Retrieved 2022-04-11.
  14. ^ Schoepf, Verena; Ross, Claire. "A deep-sea love story". Schmidt Ocean Institute.
  15. ^ Chu, Jwf; Leys, Sp (2010-11-04). "High resolution mapping of community structure in three glass sponge reefs (Porifera, Hexactinellida)". Marine Ecology Progress Series. 417: 97–113. doi:10.3354/meps08794. ISSN 0171-8630.
  16. ^ McCall, William (August 20, 2003). "Glassy sponge has better fiber optics than man-made"
  17. ^ Fernandes, Matheus C.; Aizenberg, Joanna; Weaver, James C.; Bertoldi, Katia (21 September 2020). "Mechanically robust lattices inspired by deep-sea glass sponges". Nature Materials. 20 (2): 237–241. doi:10.1038/s41563-020-0798-1. ISSN 1476-4660. PMID 32958878. S2CID 221824575.
  18. ^ "What Nature Teaches Us About Working Under Pressure - ZBglobal". www.zbglobal.com. Retrieved 2022-04-11.
  19. ^ Rao, Rajshekhar (2014). "Biomimicry in Architecture" (PDF). International Journal of Advanced Research in Civil, Structural, Environmental and Infrastructure Engineering and Developing. 1: 101–107 – via ISRJournals and Publications.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Venus' flower basket: Brief Summary

provided by wikipedia EN

The Venus' flower basket (Euplectella aspergillum) is a glass sponge in the phylum Porifera. It is a marine sponge found in the deep waters of the Pacific ocean, usually at depths below 500 meters. Like other sponges, they feed by filtering sea water to capture plankton and marine snow. Similar to other glass sponges, they build their skeletons out of silica, which forms a unique lattice structure of spicules. The sponges are usually between 10 cm and 30 cm tall, and their bodies act as refuge for their mutualist shrimp partners. This body structure is of great interest in materials science as the optical and mechanical properties are in some ways superior to man-made materials. Little is known regarding their reproduction habits, however fluid dynamics of their body structure likely influence reproduction and it is hypothesized that they may be hermaphroditic.

Collected specimen of Euplectella aspergillum
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN