dcsimg

Behavior

provided by Animal Diversity Web

Like many insects, Harmonia axyridis communicates via vision and chemical/sensory signals through the release of various pheromones. Many pheromones are used for mating signals, as is the case with many insects. They also use these pheromones to detect other individuals for congregation and hibernation during the winter months. While researchers have found the effects that these pheromones have on behaviors, no research has been done regarding their identification. One identified pheromone, harmonine, is used for defense against predators. Harmonine is produced when attacked and is secreted by reflex bleeding from tarsal joints. Prey are generally found using sight or olfactory detection.

Communication Channels: visual ; chemical

Other Communication Modes: pheromones

Perception Channels: visual ; chemical

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Graves, D. 2013. "Harmonia axyridis" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Harmonia_axyridis.html
author
Dylan Graves, University of Michigan Biological Station
editor
Angela Miner, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Conservation Status

provided by Animal Diversity Web

Harmonia axyridis has no special conservation status.

US Federal List: no special status

CITES: no special status

State of Michigan List: no special status

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Graves, D. 2013. "Harmonia axyridis" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Harmonia_axyridis.html
author
Dylan Graves, University of Michigan Biological Station
editor
Angela Miner, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Life Cycle

provided by Animal Diversity Web

Harmonia axyridis is holometabolous, progressing from egg through four larval instars, to pupa and then adult. The mean duration of each immature stage is as follows: egg - 2.8 days, first instar - 2.5 days, second instar - 1.5 days, third instar - 1.8 days, fourth instar - 4.4 days, pupa - 4.5 days. The diet of the beetle is also known to have an effect on larval development and adult weight, as is temperature. Harmonia axyridis is generally considered bivoltine in much of the world, although up to four or five generations per year have been observed. Adults diapause over winter and start laying eggs in early spring, whenever average temperatures begin to reach 12°C.

Development - Life Cycle: metamorphosis ; diapause

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Graves, D. 2013. "Harmonia axyridis" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Harmonia_axyridis.html
author
Dylan Graves, University of Michigan Biological Station
editor
Angela Miner, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

Harmonia axyridis can cause significant economic damages on fruit crops, specifically grapes. This species will crawl inside them to feed and, when the grapes are harvested, will reflex bleed, causing an unpleasant taste. This taste can even be detected in wine if H. axyridis is accidentally incorporated during the wine-making process. It is also known to nip humans when handled.

Negative Impacts: injures humans (bites or stings); crop pest

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Graves, D. 2013. "Harmonia axyridis" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Harmonia_axyridis.html
author
Dylan Graves, University of Michigan Biological Station
editor
Angela Miner, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

Harmonia axyridis serves as a biological control species for many agricultural crops, as their main dietary sources are major agricultural pests. Their worldwide introduction is due to their intense predatory nature.

Positive Impacts: controls pest population

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Graves, D. 2013. "Harmonia axyridis" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Harmonia_axyridis.html
author
Dylan Graves, University of Michigan Biological Station
editor
Angela Miner, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Associations

provided by Animal Diversity Web

Harmonia axyridis is a host species for a variety of parasites and parasitoids, specifically from the orders Diptera (Strongygaster triangulifer) and Hymenoptera (Dinocampus coccinellae, Oomyzus scaposus, Homalotylus terminalis, Pachyneuron altiscuta). Mites of the genus Coccipolipus, protozoans (such as Microsporidia), nematodes, and fungal species (Hesperomyces virescens, Beauveria bassiana) may also use it as a host species.

Outside its native range, this species can create severe ecological pressures on indigenous Coccinellidae species as they out-compete and utilize resources efficiently. Some of the species most affected are Coccinella transversoguttata, Adalia bipunctata, and Coccinella novemnotata, although others have certainly experienced pressures, as well. They also prey on herbivorous pest species, which helps maintain plant species.

Commensal/Parasitic Species:

  • Strongygaster triangulifer
  • Dinocampus coccinellae
  • Oomyzus scaposus
  • Homalotylus terminalis
  • Pachyneuron altiscuta
  • Coccipolipus
  • Hesperomyces virescens
  • Beauveria bassiana
  • Microsporidia
  • Nematoida
license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Graves, D. 2013. "Harmonia axyridis" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Harmonia_axyridis.html
author
Dylan Graves, University of Michigan Biological Station
editor
Angela Miner, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Trophic Strategy

provided by Animal Diversity Web

Harmonia axyridis is a predatory insectivore with chewing mandibles, primarily feeding on aphids and scale insects. They may also eat Thysanura species and mites. Butterfly and moth eggs may be eaten, as well. When other food sources are scarce, Harmonia axyridis has been known to eat other various Coccinellidae species. Occasionally, it may feed on grapes and similar fruits. Studies have seen that in some cases, this species will eat other sources, such as moths and pollen, but these are isolated incidences. Both adults and larvae of Harmonia axyridis will cannibalize eggs and smaller larvae.

Animal Foods: insects

Plant Foods: fruit; pollen

Primary Diet: carnivore (Insectivore )

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Graves, D. 2013. "Harmonia axyridis" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Harmonia_axyridis.html
author
Dylan Graves, University of Michigan Biological Station
editor
Angela Miner, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Distribution

provided by Animal Diversity Web

Harmonia axyridis, the Asian lady beetle, is native to the Oriental region, found in China, ranging to the far south (Yunnan and Guangxi Provinces), Japan, Korea, Mongolia, and parts of the Palearctic region, from northern Kazakhstan, and eastern Russia west to the Altai Mountains and north to Siberia. It has been introduced to at least four other continents. Its range covers the majority of North America; it is found in Mexico, across the United States (excluding Alaska and Wyoming) and much of southern Canada. This species has been found widely across South America, excluding Amazonian areas. Its habitat ranges across southern and western Europe into Bosnia and Herzegovina and Romania, and recently was found in Tunisia, Egypt, and South Africa.

Biogeographic Regions: nearctic (Introduced ); palearctic (Native ); oriental (Native ); ethiopian (Introduced ); neotropical (Introduced )

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Graves, D. 2013. "Harmonia axyridis" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Harmonia_axyridis.html
author
Dylan Graves, University of Michigan Biological Station
editor
Angela Miner, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Habitat

provided by Animal Diversity Web

Harmonia axyridis can be found on many crop species in agricultural areas where it has been introduced. It is often found on deciduous trees, flowering plants, and other plant species found in open areas. This species tends to live in open fields, agricultural areas, and meadows.

Habitat Regions: temperate ; terrestrial

Terrestrial Biomes: savanna or grassland ; forest ; scrub forest

Other Habitat Features: suburban ; agricultural

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Graves, D. 2013. "Harmonia axyridis" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Harmonia_axyridis.html
author
Dylan Graves, University of Michigan Biological Station
editor
Angela Miner, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Life Expectancy

provided by Animal Diversity Web

In its native range, Harmonia axyridis generally has two generations per year, but in some places five generations have been observed. Adults tend to live 30 to 90 days, contingent on temperature, although some have lived over three years. Whichever generation receives cues to diapause will generally live through winter, with reproduction then occurring in spring.

Range lifespan
Status: wild:
3 (high) years.

Typical lifespan
Status: wild:
30 to 90 days.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Graves, D. 2013. "Harmonia axyridis" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Harmonia_axyridis.html
author
Dylan Graves, University of Michigan Biological Station
editor
Angela Miner, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Morphology

provided by Animal Diversity Web

Harmonia axyridis is oval shaped and convex. It is a polymorphic species, with three main color morphs: red or orange with zero to many black spots (form succinea), or black with either four orange spots (form spectabilis) or two (form conspicua). Several less common morphs exist as well. Darker morphs are more common in its native range, with red or orange morphs more common in Europe and North America. The pronotum is generally white with four black spots that tend to form an "M" shape. This species has very distinct, square "shoulders." The last ventral segment on its abdomen differs between male and female individuals.

The eggs of H. axyridis are approximately 1.2 mm in length and yellow in color. Just before hatching, eggs darken to a gray or black coloration.

The larvae of H. axyridis have long bodies and are black with orange coloration (including two long orange lines on the dorsal-lateral areas of the abdomen, which start to develop after the first instar and are complete by the fourth and final instar). They have double-branched spines (scoli) running down the length of the body. The larval stages often grow longer than the final adult individual, starting at an approximate length of 1.9 to 2.1 mm in the first instar and growing to 7.5 to 10.7 mm in the fourth instar. Larvae vaguely resemble tiny black and orange alligators.

Pupae are exposed and generally shaped like an elongated dome, often attached to leaves. They tend to be orange, with the fourth instar exoskeleton still attached at the point of substrate attachment.

Range length: 5 to 8 mm.

Other Physical Features: ectothermic ; heterothermic ; bilateral symmetry ; polymorphic ; poisonous

Sexual Dimorphism: sexes alike

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Graves, D. 2013. "Harmonia axyridis" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Harmonia_axyridis.html
author
Dylan Graves, University of Michigan Biological Station
editor
Angela Miner, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Associations

provided by Animal Diversity Web

Many species of bird prey on Harmonia axyridis. The pentatomid, Podisus maculiventris is known to prey on H. axyridis, as well as many species of ants, including the red imported fire ant, Solanopsis invicta. Interspecies predation also occurs, though only when the other coccinellids are larger than the H. axyridis prey. Cannibalism on eggs and larvae is very prevalent among Harmonia axyridis populations, with some studies showing up to 50% cannibalism of eggs.

To defend itself, Harmonia axyridis produces isopropyl methoxy pyrazine (IPMP), which it secretes from its tarsi when agitated. This is highly concentrated in the hemolymph and is used as a chemical defense mechanism. Further, this species has antimicrobial agents in its hemolymph that provide defense against Gram-positive and Gram-negative bacteria as well as yeast. This species displays aposematism, as its red and black elytra can deter predators, acting as an apparent warning sign.

Known Predators:

  • Birds
  • Podisus maculiventris
  • Red imported fire ant, Solanopsis invicta
  • Coccinellidae

Anti-predator Adaptations: aposematic

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Graves, D. 2013. "Harmonia axyridis" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Harmonia_axyridis.html
author
Dylan Graves, University of Michigan Biological Station
editor
Angela Miner, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Reproduction

provided by Animal Diversity Web

Harmonia axyridis secretes pheromones to attract mates and at close distances may use sight. Reproduction is sexual, with internal fertilization of the ova. Studies show that many females are selective of male mates, often deciding on their mates based on the color of male elytra. This seems to be a selective preference, as certain morphs tend to evade predation more effectively. Even so, the species is generally polgynandrous, with individuals ultimately mating many times with many different individuals. After mating, males do not exhibit any apparent defense mechanisms to ensure the eggs are fertilized.

Mating System: polygynandrous (promiscuous)

Females of Harmonia axyridis will produce many eggs per season, averaging an approximate rate of 25 eggs per day. Individuals tend to lay egg clusters, with numbers ranging between 20 and 30 eggs per cluster. This species will breed continuously during its lifetime. Breeding is contingent on temperature, with lower temperatures increasing pre-mating and pre-oviposition periods. Females may lay unfertilized eggs along with the fertilized eggs, which are used by larvae as food sources in conditions where aphids and scale insects are scarce.

Breeding interval: Individuals will breed often and continuously over the duration of adulthood.

Breeding season: Harmonia axyridis will start to breed as soon as temperatures increase beyond approximately 12°C (50°F).

Range eggs per season: 1642 to 3819.

Key Reproductive Features: iteroparous ; seasonal breeding ; gonochoric/gonochoristic/dioecious (sexes separate); sexual ; fertilization (Internal ); oviparous

There is virtually no parental investment in this species aside from females depositing nutrients in eggs. Additionally, females may lay unfertilized eggs along with the fertilized eggs, ensuring a food source for the larvae upon hatching. Otherwise, larval individuals are independent, surviving on their own after hatching.

Parental Investment: pre-hatching/birth (Provisioning: Female)

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Graves, D. 2013. "Harmonia axyridis" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Harmonia_axyridis.html
author
Dylan Graves, University of Michigan Biological Station
editor
Angela Miner, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Brief Summary

provided by EOL authors
Harmonia axyridis, the Asian ladybird beetle, is a recognizable coccinellid beetle with red/orange or black wing elytra sporting 0 to 22 spots. Three color forms are especially common: red or orange with black spots (known as form succinea); black with four red spots (form spectabilis); and black with two red spots (form conspicua), although many other variants are also described. As well as feeding on many aphid and scale species, Harmonia axyridis eats a large variety of beetle and Lepidoptera species, and will also eat flower nectar and pollen. The Asian ladybird beetle is native to eastern Asia, but has been introduced to North America and Europe to control aphids and scale insects. It is now common, well known and spreading in those regions. The wide geographical spread of this insect is cause for concern in some places, as it is a threat to native species and biodiversity, can damage crops (especially grapes) and migrates into houses in the fall, becoming a household pest. Harmonia axyridis beetles often aggregate in large numbers, and use pheromones to communicate and attract more beetles. These aggregation pheromones have been analyzed and synthesized to develop traps for control and monitoring of the ladybird. (Koch, 2003; Wikipedia 2011)
license
cc-by-nc-sa-3.0
original
visit source
partner site
EOL authors

Harmonia axyridis

provided by wikipedia EN

Harmonia axyridis is a large lady beetle or ladybug species that is most commonly known as the harlequin, Asian, or multicoloured Asian lady beetle. This is one of the most variable species in the world, with an exceptionally wide range of colour forms.[1] It is native to eastern Asia, but has been artificially introduced to North America and Europe to control aphids and scale insects. It is now common, well known, and spreading in those regions, and has also established in Africa and widely across South America. This species is conspicuous in North America, where it may locally be known as the Halloween beetle, as it often invades homes during October to overwinter.[2]

When the species first arrived in the UK, it was labelled in jest as the "many-named ladybird" due to the great quantity of vernacular names. Among those already listed other names include multivariate, southern, Japanese, and pumpkin ladybird.[3]

Description

Harmonia axyridis is a typical coccinellid beetle in shape and structure, being domed and having a "smooth" transition between its elytra (wing coverings), pronotum, and head. It ranges from 5.5–8.5mm in size. The common color form, f. "succinea", is orange or red in colouration with 0–22 black spots of variable size. The other usual forms, f. "conspicua" and f. "spectabilis", are uniformly black with, respectively, two or four red markings. The pronotum is white with variable black patterning, ranging from a few black spots in an M formation to almost entirely black. The underside is dark with a wide reddish-brown border.

However, numerous other forms have also been recorded. Extreme forms may be entirely black, or feature complex patterns of black, orange and red.

The large size of this species is usually the first clue to its identification.[4][5] Despite variation, this species does not generally overlap in pronotal or elytral pattern with any other species, except in unmarked orange or red forms. In Europe it is similar to the much smaller Adalia decempunctata, while in America it is similar to the much smaller Mulsantina picta and spotless forms of Adalia bipunctata. When identification is difficult, the underside pattern usually enables a reliable conclusion.[1] Identification is most simple for the common forms, while less common varieties may take longer to identify.[6] They always have reddish-brown legs and are obviously brown on the underside of the abdomen, even in the melanic colour forms.

Range

Harmonia axyridis is native to eastern Asia from central Siberia, Kazakhstan, and Uzbekistan in the west, through Russia south to the Himalayas and east to the Pacific coast and Japan, including Korea, Mongolia, China, and Taiwan. As a voracious predator, it was identified as a biocontrol agent for aphids and scale insects. Consequently, it has been introduced into greenhouses, crop fields, and gardens in many countries, including the United States and parts of Europe. The species is now established in North America (United States, Canada, Mexico), Central America (Guatemala, Honduras, Costa Rica, Panama), South America (Brazil, Venezuela, Colombia, Ecuador, Peru, Argentina, Chile), Europe (Italy, Spain, the United Kingdom, Denmark, Sweden, Norway, Finland, the Netherlands, Belgium, Luxembourg, France, Germany, the Czech Republic, Slovakia, Hungary, Romania, Serbia, Croatia, Bosnia and Herzegovina, Poland), Israel, New Zealand, and South Africa.[7]

North America

Typical H. axyridis specimen from northern California

This species spread across continents because of human-mediated processes. They became established in North America as the result of introductions into the United States in an attempt to control the spread of aphids. In the last three decades, this insect has spread throughout the US and Canada, and has been a prominent factor in controlling aphid populations. The first introductions into the US took place as far back as 1916. The species repeatedly failed to establish in the wild after successfully controlling aphid populations, but an established population of beetles was observed in the wild near New Orleans, Louisiana, in about 1988. In the following years, it quickly spread to other states, being occasionally observed in the Midwest within five to seven years and becoming common in the region by about 2000. The species was also established in the Northwest by 1991, and the Northeast by 1994, aided by additional introductions from the native range, rather than just reaching there from the Southeast. Reportedly, it has heavily fed on soybean aphids (which recently appeared in the US after coming from China), supposedly saving farmers vast sums of money in 2001.

Worldwide propagation

Worldwide routes of propagation of H. axyridis were described with genetic markers in 2010.[8] The populations in eastern and western North America originated from two independent introductions from the native range.[8] The South American and African populations both originated independently from eastern North America.[8] The European population also originated from eastern North America, but with substantial genetic admixture with individuals of the European biocontrol strain (estimated at 40%).[8]

This species is widely considered to be one of the world's most invasive insects,[9][10] partly due to their tendency to overwinter indoors and the unpleasant odor and stain left by their bodily fluids when frightened or crushed, as well as their tendency to bite humans.[9] In Europe it is currently increasing to the detriment of indigenous species,[9] its voracious appetite enabling it to outcompete and even consume other ladybirds.[9] The harlequin ladybird is also highly resistant to diseases that affect other ladybird species, and carries a microsporidian parasite to which it is immune, but that can infect and kill other species.[10] Native ladybird species have experienced often dramatic declines in abundance in areas invaded by H. axyridis.[11] In 2015, it was declared the fastest invading species in the UK, spreading throughout the country after the first sighting was confirmed in 2004.[12]

In addition to its household pest status,[13] the harlequin has been reported to be a minor agricultural pest that is inadvertently harvested with crops in Iowa, Ohio, New York State, and Ontario.[14] This can cause visible and sensory contamination.[15] Contamination of grapes by this beetle has been found to alter the taste of wine.[16]

Biology and behaviour

Harmonia axyridis becomes dormant in cooler months, though it will move around whenever the temperature reaches about 10 °C (50 °F). Because the beetles will use crevices and other cool, dry, confined spaces to overwinter, significant numbers may congregate inside walls if given a large enough opening.

Large aggregations are often seen in autumn. The beetles have pheromones to signal to each other. However, many aggregation cues are visual, picking out sites at both long (light-coloured structures that are distinct from their surroundings) and short (pre-existing aggregations to join) distances. Non-volatile long-chain hydrocarbons laid down by previous aggregations also play a significant role in site selection. Both visual and hydrocarbon cues are more important than volatile pheromones.

They often congregate in sunlit areas because of the heat available, so even on fairly cold winter days, some of the hibernating beetles will "wake up" because of solar heating. Large populations can be problematic because they can form swarms and linger in an area for a long time. The beetles can form groups that stay in upper corners of windows. This beetle has been also found to be attracted to dark screening material for its warmth. It has good eyesight; it will return from a location to which it is removed, and is known to give a small bite if provoked.[17]

Harmonia axyridis, like other ladybeetles or ladybirds, uses isopropyl methoxy pyrazine as a defensive chemical to deter predation, and also carries this chemical in its hemolymph at much higher concentrations than many other ladybeetle species, along with species-/genus-specific defensive compounds such as harmonine. These insects will "reflex bleed" when agitated, releasing hemolymph from their legs. The liquid has a foul odour (similar to that of dead leaves), a bitter taste, and can stain porous materials. Some people have allergic reactions, including allergic rhinoconjunctivitis when exposed to these beetles.[2] Occasionally, the beetles will bite humans,[2] presumably in an attempt to acquire salt, although many people feel a pricking sensation as a beetle walks across the skin. Bites normally do no more harm than cause irritation, although a small number of people are allergic to bites.[18] Their natural predators include birds, spined soldier bugs, ants (including the also invasive Solenopsis invicta) and other coccinellids, including fellow Harmonia axyridis.[19]

These beetles can be difficult to identify because of their variations in color, spot size, and spot count of the elytra. The easiest way to identify H. axyridis f. succinea is to look at the pronotum and see whether the black markings look like a letter "W" or "M". This species has more white markings on the pronotum than have most native North American species, though this feature is not useful when attempting to separate it from species in other parts of the world.

Control

Numerous methods of control have been investigated in areas where this beetle has been introduced and causes a threat to native species and biodiversity and to the grape industry. Methods of control include insecticides, trapping, removal of aggregates of beetles, and mechanically preventing entry to buildings.[20] Methods under development involve the investigation of natural parasites and pathogens, including the use of parasitic sexually transmitted mites and fungal diseases.[21]

The best methods for dealing with H. axyridis in private homes involve sealing openings they may enter.[22] Sweeping and vacuuming are considered effective methods for removing them from homes, though this should be done carefully so as not to trigger reflex bleeding. A nylon stocking placed inside the vacuum cleaner's hose, secured with a rubber band, allows the beetles to be "bagged" rather than collected inside the machine.[23] A trap designed for indoor use was developed which attracts the beetles with a light and seals them in a removable bag, but does not work particularly well as H. axyridis are not strongly attracted to light.[22]

Biochemistry

Harmonia axyridis secretes a number of defensive compounds, one of which, (9Z,17R)-9-Octadecene-1,17-diamine (harmonine) has been isolated from its hemolymph. This molecule has been reported to have broad-spectrum antimicrobial activity that includes human pathogens. Antibacterial activity is most pronounced against fast-growing mycobacteria and Mycobacterium tuberculosis, and the growth of both chloroquine-resistant Plasmodium falciparum strains is also inhibited.[24]

References

  1. ^ a b "Adalia, Field Guide to Ladybugs of North America on the App Store". App Store. Retrieved 10 March 2018.
  2. ^ a b c R. L. Koch (2003). "The multicolored Asian lady beetle, Harmonia axyridis: A review of its biology, uses in biological control, and non-target impacts" (PDF). Journal of Insect Science. 3: 32. doi:10.1093/jis/3.1.32. PMC 524671. PMID 15841248.
  3. ^ Ladybird Survey page "Harmonia axyridis (Pallas) in Britain" "Harmonia axyridis, the invasive harlequin ladybird (Coccinellidae) establishing in London, Essex and the UK". Archived from the original on 2008-01-17. Retrieved 2008-01-07. Accessed 7 Jan 2008
  4. ^ "Harlequin Ladybird Survey - Recognition and Distinction". www.harlequin-survey.org. Retrieved 10 March 2018.
  5. ^ "Species Harmonia axyridis - Multicolored Asian Lady Beetle - BugGuide.Net". bugguide.net. Retrieved 10 March 2018.
  6. ^ "Harmonia axyridis". College of Agriculture and Life Sciences, Cornell University. Archived from the original on 2014-05-09. Retrieved 2014-05-12.
  7. ^ Cisneros-Heredia, Diego F.; Peñaherrera-Romero, Emilia (2020-11-27). "Invasion history of Harmonia axyridis (Pallas, 1773) (Coleoptera: Coccinellidae) in Ecuador". PeerJ. 8: e10461. doi:10.7717/peerj.10461. PMC 7703374. PMID 33312773.
  8. ^ a b c d Eric Lombaert; Thomas Guillemaud; Jean-Marie Cornuet; Thibaut Malausa; Benoît Facon; Arnaud Estoup (2010). "Bridgehead Effect in the Worldwide Invasion of the Biocontrol Harlequin Ladybird". PLoS ONE. 5 (3): e9743. Bibcode:2010PLoSO...5.9743L. doi:10.1371/journal.pone.0009743. PMC 2840033. PMID 20305822.
  9. ^ a b c d "Harlequin Ladybird Survey - Origins". www.harlequin-survey.org. Retrieved 10 March 2018.
  10. ^ a b Yong, Ed (2013). "Invasive ladybird has biological weapon". Nature. doi:10.1038/nature.2013.13011. S2CID 87225681. Retrieved 10 March 2018.
  11. ^ Russell F. Mizell III (2007). "Impact of Harmonia axyridis (Coleoptera: Coccinellidea) on native arthropod predators on pecan and crape myrtle" (PDF). Florida Entomologist. 90 (3): 524–536. doi:10.1653/0015-4040(2007)90[524:IOHACC]2.0.CO;2. JSTOR 4494179.
  12. ^ Smith, Lewis (20 May 2015). "Harlequin ladybirds declared UK's fastest invading species". The Guardian. Retrieved 4 July 2020.
  13. ^ "Orkin Asian Lady Beetles". 11 April 2018.
  14. ^ Betty Summerhayes (July 6, 2007). "OMAFRA Achievements in Crop Technology 2007". Government of Ontario. Archived from the original on January 16, 2009. Retrieved June 24, 2011.
  15. ^ "Multicolored Asian Lady Beetle" (PDF). Retrieved 2015-04-03.
  16. ^ Gary Pickering; James Lin; Roland Riesen; Andrew Reynolds; Ian Brindle; George Soleas (January 2004). "Influence of Harmonia axyridis on the sensory properties of white and red wine". American Journal of Enology and Viticulture. 55 (2): 153–159. doi:10.5344/ajev.2004.55.2.153. S2CID 94041532.
  17. ^ "Multicolored Asian Ladybeetle (Harmonia axyridis)". Archived from the original on 2010-06-09. Retrieved 2010-06-26.
  18. ^ "Medscape". Archived from the original on June 8, 2009. Retrieved August 18, 2006.
  19. ^ "Harmonia axyridis". Animal Diversity Web.
  20. ^ Marc Kenis; Helen E. Roy; Renate Zindel; Michael E. N. Majerus (2008). "Current and potential management strategies against H. axyridis" (PDF). BioControl. 53 (1): 235–252. doi:10.1007/s10526-007-9136-7. S2CID 19892524.
  21. ^ Helen Elizabeth Roy; Peter M. J. Brown; Peter Rothery; Remy L. Ware; Michael E. N. Majerus (2008). "Interactions between the fungal pathogen Beauveria bassiana and three species of coccinellid: Harmonia axyridis, Coccinella septempunctata and Adalia bipunctata in: From Biological Control to Invasion: the Ladybird Harmonia axyridis as a Model Species". BioControl. 53 (1): 265–276. doi:10.1007/s10526-007-9122-0. S2CID 33076473.
  22. ^ a b "USDA site". Ars.usda.gov. Archived from the original on 2010-07-20. Retrieved 2010-07-03.
  23. ^ "Ohio State University Extension Fact Sheet". Ohioline.osu.edu. Retrieved 2017-04-29.
  24. ^ Christian Rene Röhrich; Che Julius Ngwa; Jochen Wiesner; Henrike Schmidtberg; Thomas Degenkolb; Christian Kollewe; Rainer Fischer; Gabriele Pradel; Andreas Vilcinskas (21 September 2011). "Harmonine, a defence compound from the harlequin ladybird, inhibits mycobacterial growth and demonstrates multi-stage antimalarial activity". Biology Letters. 8 (2): 308–311. doi:10.1098/rsbl.2011.0760. PMC 3297383. PMID 21937493.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Harmonia axyridis: Brief Summary

provided by wikipedia EN

Harmonia axyridis is a large lady beetle or ladybug species that is most commonly known as the harlequin, Asian, or multicoloured Asian lady beetle. This is one of the most variable species in the world, with an exceptionally wide range of colour forms. It is native to eastern Asia, but has been artificially introduced to North America and Europe to control aphids and scale insects. It is now common, well known, and spreading in those regions, and has also established in Africa and widely across South America. This species is conspicuous in North America, where it may locally be known as the Halloween beetle, as it often invades homes during October to overwinter.

When the species first arrived in the UK, it was labelled in jest as the "many-named ladybird" due to the great quantity of vernacular names. Among those already listed other names include multivariate, southern, Japanese, and pumpkin ladybird.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN