Image of <i>Katablepharis remigera</i>
Creatures »

Cryptophytes

Cryptophyta

Description of Cryptomonads

provided by BioPedia
Circumscription: Biflagellated autotrophic, mixotrophic and heterotrophic flagellates, flagella inserting in an anterior groove/channel lines with refractile ejectisomes. Variously coloured photosynthetic compartments, in some taxa at least, formed from secondary symbioses with eukaryotes, the symbiont being located in a membrane-bound compartment and provided with a reduced nucleus (the nucleomorph). Two genera of heterotrophs, one (Goniomonas) possibly primitively so. Ultrastructural identity: Mitochondria cristae flattened, mitochondrion often extensive. Coiled ribbon extrusomes (eiectisomes) associated with flagellar pocket (gullet) and with cell surface. Geometrically positioned plates of fibrous cytoskeletal material underlie the membrane. Plastidic taxa with plastid inside a fold of the nuclear envelope and with nucleomorph where studied. No eyespot. Both flagella with stiff bipartite hairs. Small scales may be attached to cell body. Flagella insert into near parallel basal bodies, usually with multilamellate root structure (rhizostyle) in addition to several microtubular roots. Nuclear division with spindle developing from basal bodies and penetrating the dividing nucleus, the membrane of which completely breaks down. Synapomorphy: Flagellar groove/channel with associated ejectisomes and/or double row of flagellar hairs on both flagella and/or cortical plates.
license
cc-by-nc
author
biopedia
provider
BioPedia
original
visit source
partner site
BioPedia

Algae: Protists with Chloroplasts

provided by EOL authors

The algae are a polyphyletic and paraphyletic group of organisms. They are defined in differing ways, but are usually considered to be the photosynthetic organisms excepting plants. Using the term 'plants' in its most restrictive fashion, the algae are then photosynthetic organisms excepting the sister group to the Charales (i.e. the land plants). Such a definition allows inclusion of photosynthetic prokaryotes such as the cyanobacteria. The definition applied here is that the algae is that artificial subset of the photosynthetic eukaryotes which excludes the sister group to the Charales (land plants).

The algae are the dominating primary producers in aquatic ecosystems, on unstable substrates (muds and sands) and in intertidal marine habitats. Algae are commonly exploited as foodstuffs, food additives, toothpastes, etc.

The ability for eukaryotes to carry out photosynthesis was made possible by one or more symbiotic associations between heterotrophic eukaryotes and photosynthetic prokaryotes (or their descendents). There were several primary symbioses between eukaryotes and blue green algae. In one lineage, the photosynthetic organism lost much of its genetic independence and became functionally and genetically integrated as chloroplasts within the host cell. Modern chloroplasts, also called plastids, are bounded by two or more membranes, and most usually lie free in the cytoplasm, but in some cases they may be located within a fold of the nuclear envelope, or may be associated with the cytoplasm and residual nucleus of a eukaryotic endosybiont. The descendents of some of these primary plastids have gone on to form further associations. At least two types of protists (chloroarachniophytes and cryptomonads) have acquired 'plastids' by forming symbioses with eukaryotic algae. This are referred to as secondary symbioses.

Algae are distinguished on a number of different characteristics. The most important ones are:

  • the colour of the plastids (more correctly the combination of photosynthetic pigments that are present in the plastid)
  • the presence of flagella (and if so how many, how do they insert in the cell and how do they beat)
  • is the cell surrounded by extracellular material? If so, what is that material - organic or inorganic, a continuous wall or a layer of scales)
  • are the cells motile or not?
  • do they occur singly, in colonies, filaments or exhibit differentiation that would allow them to satisfy the criterion of multicellularity?

Algal protists occur in 8 lineages. These are summarised below.

Groups of Algae

ALVEOLATES

Contains some algae, autotrophic dinoflagellates, diverse, Peridinium, Symbiodinium, Ceratium

unicellular, colonial, syncytial; free-living, symbiotic and parasitic

MAJOR PIGMENTS:chlorophylls a and c, some symbionts

CHLORARACHNIOPHYTES

A few genera of amoeboid organisms all with symbiotic algae, Chlorarachnion

syncytial, free-living

MAJOR PIGMENT:Chlorophyll b

CRYPTOMONADS

About 12 genera of flagellates, Cryptomonas

single cells, rarely forming colonies, some are endobiotic

MAJOR PIGMENTS:Chlorophylls a and c, phycobilins

EUGLENIDS

about half of the genera (35) contain members with green chloroplasts, flagellates, Euglena, Trachelomonas

single cells

MAJOR PIGMENT:Chlorophyll b

GLAUCOPHYTES

Several genera of flagellated and non-flagellated protists with similar phycobilin-rich symbionts, e.g. Glaucocystis, Cyanophora

flagellated and non-flagellated cells

MAJOR PIGMENT:Phycobilin

HAPTOPHYTES

Diverse, with many genera, all or all bar one genera with plastids, with naked species and those with scales (coccolithophores)

single cells, some are endosymbionts

MAJOR PIGMENTS:Chlorophylls a and c

RED ALGAE (Rhodophyta)

All species are regarded as algal

free-living and parasitic, single celled, and multicellular

MAJOR PIGMENTS:Phycobilins

STRAMENOPILES

Most but not all stramenopiles are algae, the group includes diatoms, brown algae, synurophytes and other 'chrysophytes'

single celled, colonial and multicellular, free-living and parasitic

MAJOR PIGMENTS:Chlorophylls a and c

VIRIDAEPLANTAE

The green algae, all but a few genera are algal, prasinophytes, chlorophyta (e.g. volvocalean algae, conjugatopohytes, Ulvales, Charales)

single celled, colonial and multicellular, free-living

MAJOR PIGMENT:Chlorophyll b

Genera of algal protists for which no clear ultrastructuralidentityhas been developed (after Patterson, 1999):

  • Adinomonas
  • Archaeosphaerodiniopsis
  • Aurospora
  • Berghiella
  • Bjornbergiella
  • Boekelovia
  • Camptoptyche
  • Chalarodora
  • Chlamydomyxa
  • Copromonas
  • Cyanomastix
  • Dinoasteromonas
  • Dinoceras
  • Glaucocystopsis
  • Goniodinium
  • Heteromastix
  • Hillea
  • Histiophysis
  • Isoselmis
  • Melanodinium
  • Meringosphaera
  • Monodus
  • Nephrodinium
  • Pachydinium
  • Peliainia
  • Petasaria
  • Phialonema
  • Pleuromastix
  • Pseudoactiniscus
  • Strobilomonas
  • Syncrypta
  • Tetragonidium
  • Thaulirens
  • Thaumatodinium
  • Thylakomonas
  • Triangulomonas
license
cc-by-3.0
copyright
David J. Patterson
bibliographic citation
Algae: Protists with Chloroplasts. Authored by David J. Patterson. Tree of Life; accessed August 13, 2013
author
Jennifer Hammock (jhammock)
original
visit source
partner site
EOL authors

Cryptomonad

provided by wikipedia EN

The cryptomonads (or cryptophytes)[1] are a group of algae,[2] most of which have plastids. They are common in freshwater, and also occur in marine and brackish habitats. Each cell is around 10–50 μm in size and flattened in shape, with an anterior groove or pocket. At the edge of the pocket there are typically two slightly unequal flagella.

Some may exhibit mixotrophy.[3]

Characteristics

Cryptomonads are distinguished by the presence of characteristic extrusomes called ejectosomes, which consist of two connected spiral ribbons held under tension.[4] If the cells are irritated either by mechanical, chemical or light stress, they discharge, propelling the cell in a zig-zag course away from the disturbance. Large ejectosomes, visible under the light microscope, are associated with the pocket; smaller ones occur underneath the periplast, the cryptophyte-specific cell surrounding.[5][6]

Except for the class Goniomonadea, which lacks plastids entirely,[7] and the Chilomonas (class Cryptophyceae), which has leucoplasts, cryptomonads have one or two chloroplasts. These contain chlorophylls a and c, together with phycobiliproteins and other pigments, and vary in color (brown, red to blueish-green). Each is surrounded by four membranes, and there is a reduced cell nucleus called a nucleomorph between the middle two. This indicates that the plastid was derived from a eukaryotic symbiont, shown by genetic studies to have been a red alga.[8] However, the plastids are very different from red algal plastids: phycobiliproteins are present but only in the thylakoid lumen and are present only as phycoerythrin or phycocyanin. In the case of Rhodomonas, the crystal structure has been determined to 1.63Å;[9] and it has been shown that the alpha subunit bears no relation to any other known phycobiliprotein.

A few cryptomonads, such as Cryptomonas, can form palmelloid stages, but readily escape the surrounding mucus to become free-living flagellates again. Some Cryptomonas species may also form immotile microbial cysts—resting stages with rigid cell walls to survive unfavorable conditions. Cryptomonad flagella are inserted parallel to one another, and are covered by bipartite hairs called mastigonemes, formed within the endoplasmic reticulum and transported to the cell surface. Small scales may also be present on the flagella and cell body. The mitochondria have flat cristae, and mitosis is open; sexual reproduction has also been reported.

Classification

 src=
Cryptophytes under SEM
 src=
Cryptophytes under light microscope

The first mention of cryptomonads appears to have been made by Christian Gottfried Ehrenberg in 1831,[10] while studying Infusoria. Later, botanists treated them as a separate algae group, class Cryptophyceae or division Cryptophyta, while zoologists treated them as the flagellate protozoa order Cryptomonadina. In some classifications, the cryptomonads were considered close relatives of the dinoflagellates because of their (seemingly) similar pigmentation, being grouped as the Pyrrhophyta. There is considerable evidence that cryptomonad chloroplasts are closely related to those of the heterokonts and haptophytes, and the three groups are sometimes united as the Chromista. However, the case that the organisms themselves are closely related is not very strong, and they may have acquired plastids independently. Currently they are discussed to be members of the clade Diaphoretickes and to form together with the Haptophyta the group Hacrobia. Parfrey et al. and Burki et al. placed Cryptophyceae as a sister clade to the Green Algae.[11][12]

One suggested grouping is as follows: (1) Cryptomonas, (2) Chroomonas/Komma and Hemiselmis, (3) Rhodomonas/Rhinomonas/Storeatula, (4) Guillardia/Hanusia, (5) Geminigera/Plagioselmis/Teleaulax, (6) Proteomonas sulcata, (7) Falcomonas daucoides.[13]

References

  1. ^ Barnes, Richard Stephen Kent (2001). The Invertebrates: A Synthesis. Wiley-Blackwell. p. 41. ISBN 978-0-632-04761-1.
  2. ^ Khan H, Archibald JM (May 2008). "Lateral transfer of introns in the cryptophyte plastid genome". Nucleic Acids Res. 36 (9): 3043–53. doi:10.1093/nar/gkn095. PMC 2396441. PMID 18397952.
  3. ^ "Cryptophyta - the cryptomonads". Archived from the original on 2011-06-10. Retrieved 2009-06-02.
  4. ^ Graham, L. E.; Graham, J. M.; Wilcox, L. W. (2009). Algae (2nd ed.). San Francisco, CA: Benjamin Cummings (Pearson). ISBN 9780321559654.
  5. ^ Morrall, S.; Greenwood, A. D. (1980). "A comparison of the periodic sub-structures of the trichocysts of the Cryptophyceae and Prasinophyceae". BioSystems. 12 (1–2): 71–83. doi:10.1016/0303-2647(80)90039-8. PMID 6155157.
  6. ^ Grim, J. N.; Staehelin, L. A. (1984). "The ejectisomes of the flagellate Chilomonas paramecium - Visualization by freeze-fracture and isolation techniques". Journal of Protozoology. 31 (2): 259–267. doi:10.1111/j.1550-7408.1984.tb02957.x. PMID 6470985.
  7. ^ Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids
  8. ^ Douglas, S.; et al. (2002). "The highly reduced genome of an enslaved algal nucleus". Nature. 410 (6832): 1091–1096. Bibcode:2001Natur.410.1091D. doi:10.1038/35074092. PMID 11323671.
  9. ^ Wilk, K.; et al. (1999). "Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: Crystal structure of a cryptophyte phycoerythrin at 1.63Å resolution". PNAS. 96 (16): 8901–8906. doi:10.1073/pnas.96.16.8901. PMC 17705. PMID 10430868.
  10. ^ Novarino, G. (2012). "Cryptomonad taxonomy in the 21st century: The first 200 years". Phycological Reports: Current Advances in Algal Taxonomy and Its Applications: Phylogenetic, Ecological and Applied Perspective: 19–52. Retrieved 2018-10-16.
  11. ^ Laura Wegener Parfrey; Daniel J G Lahr; Andrew H Knoll; Laura A Katz (16 August 2011). "Estimating the timing of early eukaryotic diversification with multigene molecular clocks" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 108 (33): 13624–9. doi:10.1073/PNAS.1110633108. ISSN 0027-8424. PMC 3158185. PMID 21810989. Wikidata Q24614721.
  12. ^ Burki, Fabien; Kaplan, Maia; Tikhonenkov, Denis V.; Zlatogursky, Vasily; Minh, Bui Quang; Radaykina, Liudmila V.; Smirnov, Alexey; Mylnikov, Alexander P.; Keeling, Patrick J. (2016-01-27). "Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista". Proc. R. Soc. B. 283 (1823): 20152802. doi:10.1098/rspb.2015.2802. ISSN 0962-8452. PMC 4795036. PMID 26817772.
  13. ^ "Cryptomonads". Retrieved 2009-06-24.

 title=
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Cryptomonad: Brief Summary

provided by wikipedia EN

The cryptomonads (or cryptophytes) are a group of algae, most of which have plastids. They are common in freshwater, and also occur in marine and brackish habitats. Each cell is around 10–50 μm in size and flattened in shape, with an anterior groove or pocket. At the edge of the pocket there are typically two slightly unequal flagella.

Some may exhibit mixotrophy.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Cryptophyceae

provided by wikipedia EN

The cryptophyceae are a class of algae,[1] most of which have plastids. About 220 species are known,[2] and they are common in freshwater, and also occur in marine and brackish habitats. Each cell is around 10–50 μm in size and flattened in shape, with an anterior groove or pocket. At the edge of the pocket there are typically two slightly unequal flagella.

Some exhibit mixotrophy.[3]

Characteristics

Cryptophytes are distinguished by the presence of characteristic extrusomes called ejectosomes or ejectisomes, which consist of two connected spiral ribbons held under tension.[4] If the cells are irritated either by mechanical, chemical or light stress, they discharge, propelling the cell in a zig-zag course away from the disturbance. Large ejectosomes, visible under the light microscope, are associated with the pocket; smaller ones occur underneath the periplast, the cryptophyte-specific cell surrounding.[5][6]

Except for Chilomonas, which has leucoplasts, cryptophytes have one or two chloroplasts. These contain chlorophylls a and c, together with phycobiliproteins and other pigments, and vary in color (brown, red to blueish-green). Each is surrounded by four membranes, and there is a reduced cell nucleus called a nucleomorph between the middle two. This indicates that the plastid was derived from a eukaryotic symbiont, shown by genetic studies to have been a red alga.[7] However, the plastids are very different from red algal plastids: phycobiliproteins are present but only in the thylakoid lumen and are present only as phycoerythrin or phycocyanin. In the case of "Rhodomonas" the crystal structure has been determined to 1.63Å;[8] and it has been shown that the alpha subunit bears no relation to any other known phycobiliprotein.

A few cryptophytes, such as Cryptomonas, can form palmelloid stages, but readily escape the surrounding mucus to become free-living flagellates again. Some Cryptomonas species may also form immotile microbial cysts–resting stages with rigid cell walls to survive unfavorable conditions. Cryptophyte flagella are inserted parallel to one another, and are covered by bipartite hairs called mastigonemes, formed within the endoplasmic reticulum and transported to the cell surface. Small scales may also be present on the flagella and cell body. The mitochondria have flat cristae, and mitosis is open; sexual reproduction has also been reported.

The group have evolved a whole range of light-absorbing pigments, called phycobilins, which are able to absorb wavelengths that are not accessible to other plants or algae, allowing them to live in a variety of different ecological niches.[9]

While cryptophytes are usually seen as asexual, sexual reproductions do occur; both haploid and diploid forms have been found. The two species Teleaulax amphioxeia and Plagioselmis prolonga are now considered to be the same species, where T. amphioxeia is the diploid form and P. prolonga is the haploid form. The diploid form is most common when there are more nutrients in the water. Two haploid cells will often fuse to form a diploid cell, mixing their genes.[10]

Classification

 src=
Cryptophytes under SEM
 src=
Cryptophytes under light microscope

The first mention of cryptophytes appears to have been made by Christian Gottfried Ehrenberg in 1831,[11] while studying Infusoria. Later, botanists treated them as a separate algae group, class Cryptophyceae or division Cryptophyta, while zoologists treated them as the flagellate protozoa order Cryptomonadina. In some classifications, the cryptomonads were considered close relatives of the dinoflagellates because of their (seemingly) similar pigmentation, being grouped as the Pyrrhophyta. There is considerable evidence that cryptophyte chloroplasts are closely related to those of the heterokonts and haptophytes, and the three groups are sometimes united as the Chromista. However, the case that the organisms themselves are closely related is not very strong, and they may have acquired plastids independently. Currently they are discussed to be members of the clade Diaphoretickes and to form together with the Haptophyta the group Hacrobia. Parfrey et al. and Burki et al. placed Cryptophyceae as a sister clade to the Green Algae.[12][13]

One suggested grouping is as follows: (1) Cryptomonas, (2) Chroomonas/Komma and Hemiselmis, (3) Rhodomonas/Rhinomonas/Storeatula, (4) Guillardia/Hanusia, (5) Geminigera/Plagioselmis/Teleaulax, (6) Proteomonas sulcata, (7) Falcomonas daucoides.[14]

References

  1. ^ Khan H, Archibald JM (May 2008). "Lateral transfer of introns in the cryptophyte plastid genome". Nucleic Acids Res. 36 (9): 3043–53. doi:10.1093/nar/gkn095. PMC 2396441. PMID 18397952.
  2. ^ Cryptophyceae - :: Algaebase
  3. ^ "Cryptophyta - the cryptomonads". Archived from the original on 2011-06-10. Retrieved 2009-06-02.
  4. ^ Graham, L. E.; Graham, J. M.; Wilcox, L. W. (2009). Algae (2nd ed.). San Francisco, CA: Benjamin Cummings (Pearson). ISBN 9780321559654.
  5. ^ Morrall, S.; Greenwood, A. D. (1980). "A comparison of the periodic sub-structures of the trichocysts of the Cryptophyceae and Prasinophyceae". BioSystems. 12 (1–2): 71–83. doi:10.1016/0303-2647(80)90039-8. PMID 6155157.
  6. ^ Grim, J. N.; Staehelin, L. A. (1984). "The ejectisomes of the flagellate Chilomonas paramecium - Visualization by freeze-fracture and isolation techniques". Journal of Protozoology. 31 (2): 259–267. doi:10.1111/j.1550-7408.1984.tb02957.x. PMID 6470985.
  7. ^ Douglas, S.; et al. (2002). "The highly reduced genome of an enslaved algal nucleus". Nature. 410 (6832): 1091–1096. Bibcode:2001Natur.410.1091D. doi:10.1038/35074092. PMID 11323671.
  8. ^ Wilk, K.; et al. (1999). "Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: Crystal structure of a cryptophyte phycoerythrin at 1.63Å resolution". PNAS. 96 (16): 8901–8906. doi:10.1073/pnas.96.16.8901. PMC 17705. PMID 10430868.
  9. ^ Callier, Viviane (23 October 2019). "This Type of Algae Absorbs More Light for Photosynthesis Than Other Plants". Smithsonian Magazine.
  10. ^ Dimorphism in cryptophytes—The case of Teleaulax amphioxeia/Plagioselmis prolonga and its ecological implications
  11. ^ Novarino, G. (2012). "Cryptomonad taxonomy in the 21st century: The first 200 years". Phycological Reports: Current Advances in Algal Taxonomy and Its Applications: Phylogenetic, Ecological and Applied Perspective: 19–52. Retrieved 2018-10-16.
  12. ^ Laura Wegener Parfrey; Daniel J G Lahr; Andrew H Knoll; Laura A Katz (16 August 2011). "Estimating the timing of early eukaryotic diversification with multigene molecular clocks" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 108 (33): 13624–9. doi:10.1073/PNAS.1110633108. ISSN 0027-8424. PMC 3158185. PMID 21810989. Wikidata Q24614721.
  13. ^ Burki, Fabien; Kaplan, Maia; Tikhonenkov, Denis V.; Zlatogursky, Vasily; Minh, Bui Quang; Radaykina, Liudmila V.; Smirnov, Alexey; Mylnikov, Alexander P.; Keeling, Patrick J. (2016-01-27). "Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista". Proc. R. Soc. B. 283 (1823): 20152802. doi:10.1098/rspb.2015.2802. ISSN 0962-8452. PMC 4795036. PMID 26817772.
  14. ^ "Cryptomonads". Retrieved 2009-06-24.
  15. ^ Daugbjerg, Niels; Norlin, Andreas; Lovejoy, Connie (2018-07-25). "Baffinella frigidus gen. et sp. nov. (Baffinellaceae fam. nov., Cryptophyceae) from Baffin Bay: Morphology, pigment profile, phylogeny, and growth rate response to three abiotic factors" (PDF). J. Phycol. 54 (5): 665–680. doi:10.1111/jpy.12766. ISSN 1529-8817. PMID 30043990.

 title=
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Cryptophyceae: Brief Summary

provided by wikipedia EN

The cryptophyceae are a class of algae, most of which have plastids. About 220 species are known, and they are common in freshwater, and also occur in marine and brackish habitats. Each cell is around 10–50 μm in size and flattened in shape, with an anterior groove or pocket. At the edge of the pocket there are typically two slightly unequal flagella.

Some exhibit mixotrophy.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Classification

provided by World Register of Marine Species
Cryptophyta is also a valid synonym of Cryptomonada.
license
cc-by-4.0
copyright
WoRMS Editorial Board
bibliographic citation
Margulis, L.; Schwartz, K.V. (1998). Five Kingdoms: an illustrated guide to the Phyla of life on earth. 3rd edition. Freeman: New York, NY (USA). ISBN 0-7167-3027-8. xx, 520 pp.
contributor
[email]