dcsimg
Image of giant cane
Creatures » » Plants » » Dicotyledons » » True Grasses »

Giant Cane

Arundinaria gigantea (Walter) Muhl.

Broad-scale Impacts of Fire

provided by Fire Effects Information System Plants
Although fire will kill all aboveground plant parts, it maintains cane stands by stimulating the production of new sprouts and eliminating other vegetation that would compete with the sprouts for water and nutrients [55].
license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Broad-scale Impacts of Plant Response to Fire

provided by Fire Effects Information System Plants
More info for the terms: cover, density, forest, prescribed burn, shrubs, succession, tree, wildfire

Cane stands tend to remain even-aged for 2 to 3 years following fire with many
sprouts emerging within the 1st year, and few new shoots in the 2nd and 3rd
years. Thereafter, new sprouts again start to appear, and the stands become uneven-aged [54].

Cane may not respond to burning if overall stand vigor is extremely poor. If
cane stands of low vigor are burned, other plant species may regenerate more
quickly, and the cane may never recover [54].


A spring prescribed burn promoted cane in a pond pine/cane community in the
North Carolina coastal plain. On sites without tree cover, cane stem numbers
increased 88% in the first year following the burn. On sites with pond pine
tree cover, cane stem numbers increased 40% in the first year [54].


Fire favored switch cane in longleaf and loblolly pine communities in the South
Carolina coastal plain. Prescribed burns were carried out in the winter over a
12-year period at intervals of 1, 2, 3, and 4 years. Prior to burning, the
understory was predominantly shrubs, with a minor to moderate component of
switch cane. Burning resulted in a general conversion of the understory from
shrubs to grasses, primarily switch cane [82].


In the absence of fire, cane stands lose vigor, culms die, and succession by
other plant species exceeds the rate of cane regeneration. In 1 study in a
pond pine/cane forest in the coastal plain of North Carolina, cane stem density
started to decline 10 years after a spring wildfire. From 10 to 13 years
after fire, cane stem numbers declined 50%, and by year 14, there was a 65%
reduction in density [54].


Repeated annual or semi-annual fires are detrimental to cane stands because the
continuous removal of the stems and leaves depletes food reserves in the rhizomes,
and new sprouts cannot be produced [7,56,106].

license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Common Names

provided by Fire Effects Information System Plants
cane

giant cane

switch cane
license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Conservation Status

provided by Fire Effects Information System Plants
Information on state-level protected status of plants in the United States is available at Plants Database.
license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Description

provided by Fire Effects Information System Plants
More info for the terms: caryopsis, fruit

This description provides characteristics that may be relevant to fire ecology, and is not meant for identification. Keys for identification of cane are available (e.g. [48,64,77,97]).

Cane is a native, perennial, evergreen grass that grows to a height of 6.6 to 32.8 feet (2-10 m). The coarse stems are round and hollow, 0.7 to 3 inches (2-7.6 cm) thick, and generally survive for about 10 years. Leaves range from 3.9 to 11.8 inches (10-30 cm) in length and from 0.8 to 1.6 inches (2-4 cm) wide. The flowers are racemes or simple panicles with several spikelets 1.6 to 2.8 inches (4-7 cm) long and 0.3 inch (8 mm) wide. The fruit is a caryopsis, 0.3 inch (8 mm) long and 0.1 inch (3 mm) wide. Cane forms an extensive system of tough, thick rhizomes [18,48,51,64,77]. Rhizomes vary in size but rarely are larger than 0.75 inch (1.9 cm) in diameter [55].

Physiology:
Flooding―Cane has high flood tolerance and is well adapted to waterlogged soils and frequently flooded sites [14,18,62].

license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Distribution

provided by Fire Effects Information System Plants

Cane occurs from southern New York south to central Florida and west to Texas, Oklahoma, Kansas, Missouri, and Illinois [18,58]. Plants Database provides a distributional map of cane and its infrataxa.

Infrataxa: Giant cane has a distribution similar to cane in general, but does not occur in New York. Switch cane has a distribution similar to that of cane throughout the Atlantic and Southern Coastal Plains, but it does not occur in Delaware, Illinois, Indiana, Kansas, Kentucky, Missouri, Ohio, Texas, or West Virginia [100].

license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Fire Ecology

provided by Fire Effects Information System Plants
More info for the terms: bog, fire frequency, fire intensity, fire regime, fire severity, forest, frequency, fuel, grassland, hardwood, herb, herbaceous, low-severity fire, marsh, mesic, natural, organic soils, peat, severity, shrub, shrubland, shrubs, top-kill, woodland

Fire adaptations: Cane is adapted to fire by sprouting quickly and prolifically from rhizomes [18,53,74].

FIRE REGIMES: Canebrakes are fire-dependent ecosystems [34,40]. Prior to European settlement, fire was the primary factor that maintained monotypic canebrakes on hundreds of thousands of acres across the mid-Atlantic and southeastern U.S. It is estimated that the historical fire frequency of canebrakes in the southeastern U.S. ranged from 2 to 8 years [34]. The dense growth creates heavy fuel loads and makes canebrakes highly flammable [55,91]. Canebrakes on peatlands historically experienced landscape-scale fires that burned for weeks or months, creeping through swamps, smoldering in peat, and flaring up when flammable vegetation was reached or when conditions of humidity and wind reached critical thresholds [32]. In canebrakes of bottomland hardwood ecosystems, fire intensity in the cane stands was much higher than in the adjacent hardwood forest, although the fire severity was low except during drought. Large fires only occurred after an extended drought, usually a dry fall followed by a dry spring [103].

FIRE REGIMES in the various woodland and shrubland communities where cane may occur can be variable. The southern pine forests and pine savannas typically have fire return intervals of less than 10 years [68,103]. In the southeastern U.S., adiabatic thunderstorms can occur almost daily during the summer, and this region has 1 of the highest annual lightning frequencies in the world [68,75]. Although the number of lightning fires is highest from June to August, the majority of acreage burns in May and June in Florida and south Georgia, when the time between thunderstorms is longer. In the late summer, thunderstorms and associated rainfall are more frequent and humidities are higher. Historically, fires associated with dry frontal systems probably were quite large and may have burned for weeks or months, particularly in organic/peaty soil. Such fires likely spread into adjacent upland communities. The historic high fire frequency resulted in a frequent low-severity fire regime. Exceptions occurred when catastrophic events, such as hurricanes, tornados, and severe drought, were precursors to fires of much higher intensity and severity [75,103].

Pond pine pocosins burn on a 20- to 50-year cycle, but on highly productive sites, fire-return intervals of 3 to 10 years can be common. The shorter interval fires may produce a pine savanna with a grass understory. Mesic sites have a shrub layer comprised of many ericaceous evergreen shrubs that tend to burn intensely, resulting in the top-kill or death of all vegetation except pond pine. Pond pine has the ability to sprout from its base as well as along its stem and branches; thus, its aboveground stem survives higher severity fires than stems of most other pine species. This trait allows the species to dominate wet areas such as pocosins. Summer fires during severe droughts can eliminate pond pine and cane, because the underlying organic soil burns, destroying root systems [103].

Cane grows in hardwood communities with a wide range of fire frequencies, from the short return interval of 3 to 8 years for chestnut oak, to the moderate-return intervals of 35 years for yellow-poplar and oak-hickory communities, and the 1000+ years possible for some maple, beech, and birch communities. On bottomland hardwood sites, low-severity fires are the norm because fuel loads are generally light due to rapid decomposition on these moist, humid sites. Insect- and disease-related mortality and windthrow can result in heavy loadings of large woody fuels which, in times of drought, will support stand-replacement fires [103].

Evergreen bay forests of loblolly bay, sweetbay, and redbay are characterized by a stand replacement fire regime. This type now burns on about a 20- to 100-year cycle, but the historic fire frequency is not well documented [65]. Shrub bogs are bay forests that burn every 2 to 5 decades. More frequent burning, at least once a decade, removes the shrub layer, resulting in an herb bog. If the underlying organic soils are completely consumed, both pocosins and bays will revert to marsh [103].

Before European settlers harvested Atlantic white-cedar, it was generally perpetuated by major disturbances, probably stand-replacing crown fires that occurred at 25 to 300 year intervals [103].

Embedded within pine and floodplain hardwood ecosystems are numerous other ecosystems such as depressional wetlands, including bays, lime sinks, cypress ponds and savannas, gum ponds, bay swamps, pitcher plant bogs, shrub bogs, and spring seeps. Fires in these wetland communities are typically stand-replacing. Fire return intervals can be variable: 3 to 9 years in herb bogs and shrub bogs; 20 to 30 years in gum ponds and bog swamps; 20 to 50 years in titi shrub bogs, and 20 to 150 years in many cypress ponds and bay swamps [103].

Wet grassland ecosystems are characterized by a presettlement fire frequency of 1 to 3 years. These ecosystems typically contain large quantities of herbaceous vegetation and are considered highly flammable. The coastal grassland landscapes are often quite extensive, a factor that aids in the propagation of an individual fire. Depending on fuel and wind speeds, fire may either bridge small to moderate-sized natural breaks, such as stream channels, or be stopped by them [103]. Lightning-strike fires are common in coastal wetlands, and often fire from adjacent uplands can spread into the wetlands [32].

The following table provides fire return intervals for plant communities and ecosystems where cane is important. Find fire regime information for the plant communities in which this species may occur by entering the species name in the FEIS home page under "Find FIRE REGIMES".

Community or Ecosystem Dominant Species Fire Return Interval Range (years) maple-beech Acer-Fagus spp. 684-1,385 [15,103] maple-beech-birch Acer-Fagus-Betula spp. >1,000 sugar maple Acer saccharum >1,000 sugar maple-basswood Acer saccharum-Tilia americana >1,000 sugarberry-America elm-green ash Celtis laevigata-Ulmus americana-Fraxinus pennsylvanica <35 to 200 Atlantic white-cedar Chamaecyparis thyoides 35 to >200 beech-sugar maple Fagus spp.-Acer saccharum >1,000 [103] green ash Fraxinus pennsylvanica <35 to >300 [28,103] yellow-poplar Liriodendron tulipifera <35 shortleaf pine Pinus echinata 2-15 shortleaf pine-oak Pinus echinata-Quercus spp. <10 slash pine Pinus elliottii 3-8 slash pine-hardwood Pinus elliottii-variable <35 [103] longleaf-slash pine Pinus palustris-P. elliottii 1-4 [68,103] longleaf pine-scrub oak Pinus palustris-Quercus spp. 6-10 pocosin Pinus serotina 3-8 pond pine Pinus serotina 3-8 loblolly pine Pinus taeda 3-8 loblolly-shortleaf pine Pinus taeda-P. echinata 10 to <35 sycamore-sweetgum-American elm Platanus occidentalis-Liquidambar styraciflua-Ulmus americana <35 to 200 oak-hickory Quercus-Carya spp. <35 [103] oak-gum-cypress Quercus-Nyssa-spp.-Taxodium distichum 35 to >200 [68] southeastern oak-pine Quercus-Pinus spp. <10 white oak-black oak-northern red oak Quercus alba-Q. velutina-Q. rubra <35 chestnut oak Quercus prinus 3-8 black oak Quercus velutina <35 live oak Quercus virginiana 10 to <100 [103] cabbage palmetto-slash pine Sabal palmetto-Pinus elliottii <10 [68,103] baldcypress Taxodium distichum var. distichum 100 to >300 pondcypress Taxodium distichum var. nutans <35 [68]
license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Fire Management Considerations

provided by Fire Effects Information System Plants
More info for the terms: density, fresh, litter, prescribed fire

Prescribed fire can be used to renovate decadent cane stands. Hughes [54] recommends prescribed fire at 10-year-intervals to increase cane density. Leithead and others [62] caution that burns should not be conducted any more often than every 3 to 4 years. Low-severity fires limited to surface litter are adequate to stimulate new sprout growth, but aerial vegetation that was killed, but not consumed, by fire presents an increased fire hazard, and reburning may be warranted for fire hazard reduction. In 1 study in a North Carolina canebrake, a prescribed fire reduced fire hazard for the first 2 to 3 years, and fuels reached a peak of 5 to 7 tons/acre after 3 or 4 years of fire protection. Therefore, if a reduction of fire hazard is desired, a short burning cycle is preferable [54].

Prescribed fire may not help to promote the rapid spread of cane into adjacent areas. If soils are compacted, lateral penetration of roots and rhizomes is slow [54].

Grazing reduces the fire hazard in cane stands. In the pocosins of North Carolina, grazing reduced the total combustible material per acre by 43%. Three different fires were noticeably slowed down and/or stopped once they entered the grazed area. Although burning may be beneficial in some respects, burned cane range is particularly susceptible to grazing damage, and over-use of fresh burns must be avoided to maintain grazing values [91].

Hilmon and Hughes [50] cautioned that control of wild cane fires may be "difficult or impossible" because of their speed and intensity [50].
license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Growth Form (according to Raunkiær Life-form classification)

provided by Fire Effects Information System Plants
More info on this topic.

More info for the terms: geophyte, phanerophyte

RAUNKIAER [78] LIFE FORM:
Phanerophyte
Geophyte
license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Habitat: Cover Types

provided by Fire Effects Information System Plants
More info on this topic.

This species is known to occur in association with the following cover types (as classified by the Society of American Foresters):

More info for the terms: cover, swamp

SAF COVER TYPES [30]:




23 Eastern hemlock

26 Sugar maple-basswood

27 Sugar maple

53 White oak

57 Yellow-poplar

59 Yellow-poplar-white oak-northern red oak

60 Beech-sugar maple

61 River birch-sycamore

70 Longleaf pine

71 Longleaf pine-scrub oak

72 Southern scrub oak

74 Cabbage palmetto

75 Shortleaf pine

76 Shortleaf pine-oak

80 Loblolly pine-shortleaf pine

81 Loblolly pine

82 Loblolly pine-hardwood

83 Longleaf pine-slash pine

84 Slash pine

85 Slash pine-hardwood

87 Sweetgum-yellow-poplar

88 Willow oak-water oak-diamondleaf (laurel) oak

89 Live oak

91 Swamp chestnut oak-cherrybark oak

92 Sweetgum-willow oak

93 Sugarberry-American elm-green ash

94 Sycamore-sweetgum-American elm

96 Overcup oak-water hickory

97 Atlantic white-cedar

98 Pond pine

100 Pondcypress

101 Baldcypress

102 Baldcypress-tupelo

103 Water tupelo-swamp tupelo

104 Sweetbay-swamp tupelo-redbay

110 Black oak
license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Habitat: Ecosystem

provided by Fire Effects Information System Plants
More info on this topic.

This species is known to occur in the following ecosystem types (as named by the U.S. Forest Service in their Forest and Range Ecosystem [FRES] Type classification):

ECOSYSTEMS [35]:




FRES12 Longleaf-slash pine

FRES13 Loblolly-shortleaf pine

FRES14 Oak-pine

FRES15 Oak-hickory

FRES16 Oak-gum-cypress

FRES17 Elm-ash-cottonwood

FRES41 Wet grasslands
license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Habitat: Plant Associations

provided by Fire Effects Information System Plants
More info on this topic.

This species is known to occur in association with the following plant community types (as classified by Küchler 1964):

More info for the term: forest

KUCHLER [61] PLANT ASSOCIATIONS:




K079 Palmetto prairie

K089 Black Belt

K090 Live oak-sea oats

K099 Maple-basswood forest

K100 Oak-hickory forest

K101 Elm-ash forest

K102 Beech-maple forest

K103 Mixed mesophytic forest

K104 Appalachian oak forest

K109 Transition between K104 and K106

K111 Oak-hickory-pine

K112 Southern mixed forest

K113 Southern floodplain forest

K114 Pocosin
license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Habitat: Rangeland Cover Types

provided by Fire Effects Information System Plants
More info on this topic.

This species is known to occur in association with the following Rangeland Cover Types (as classified by the Society for Range Management, SRM):

More info for the terms: cover, hardwood

SRM (RANGELAND) COVER TYPES [93]:




805 Riparian

809 Mixed hardwood and pine

812 North Florida flatwoods

813 Cutthroat seeps

814 Cabbage palm flatwoods

815 Upland hardwood hammocks

816 Cabbage palm hammocks

817 Oak hammocks

821 Pitcher plant bogs

822 Slough
license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Immediate Effect of Fire

provided by Fire Effects Information System Plants
The coarse stems and leaves of cane are readily killed by fire, but the rhizomes usually survive [55].
license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Importance to Livestock and Wildlife

provided by Fire Effects Information System Plants
More info for the terms: bog, cover, density, herbaceous, swamp

Cane provides high quality forage for cattle, horses, swine, and domestic sheep [62]. Because it is evergreen, cane is good for grazing year-round [4]. Cane was once widely utilized as a forage plant for cattle and domestic sheep across much of the southeastern U.S. In Mississippi cane was once commonly called "mutton grass" because of its value as domestic sheep forage [62]. Because of the dramatic reduction in cane habitat, it is generally no longer considered a valuable range forage plant [46].

Cane is easily damaged by grazing and the rooting of swine, and stands may take years to recover from damage [20,51,91]. Overgrazing is considered 1 of the major factors involved in the decrease of cane habitat in the U.S. following European settlement [7]. Plants are most susceptible to grazing damage in the spring and summer [4]. Continuous summer grazing can cause a decline in cane stem density and a reduction in stem height [54]. According to a 1971 handbook, no more than 50% of the current year's growth should be grazed off in any season. It is also recommended that summer grazing be deferred for at least 90 days every 2 to 3 years. Controlled burns every 3 to 4 years can be used to maintain cane fields and improve forage value. Burned fields must be protected from grazing for the first growing season to allow the cane to recover [62].

Palatability/nutritional value: Where it occurs, cane is 1 of the most palatable and preferred forages by cattle, and it can comprise the bulk of the animal's diet when abundant [91]. The crude protein, calcium, and phosphorus content of cane average higher than other native southern grasses [46]. Digestible nutrients in cane foliage are highest in May and June and decline rapidly during the remainder of the summer and fall [55].

Cover value: Cane provides good cover for nesting birds, small mammals, and reptiles [5,74]. Canebrakes are critical nesting habitat for the Swainson's warbler [7,44,99]. In the South Carolina coastal plain, hooded warblers have a high nesting success rate in dense patches of cane, possibly because the nests are well protected from snake predation [67]. Bachman's warbler historically required extensive canebrakes for nesting, and the possible extinction of this bird is probably related to the disappearance of large canebrakes [72,81]. The white-eyed vireo and Kentucky warbler are also strongly associated with cane [83]. Cane growing in creek valleys provides desirable cover for northern bobwhite [19].

Canebrakes formerly supported high population densities of white-tailed deer, bison, and wild turkeys in the southeastern U.S., and provided good denning cover and escape corridors for black bear and mountain lion [7]. Swamp rabbits utilize canebrakes for cover and browse the foliage and shoots. The rabbits appear to be restricted to canebrakes in southern Indiana and southeastern Missouri [74,98]. The disappearance of large canebrakes has been cited as a causal factor in population declines of bison, black bear, and swamp rabbit in the Southeast [7,74]. White-tailed deer forage switch cane stems only in the spring of the first year following a burn. Thereafter, the stems become too coarse and are no longer palatable [111]. Switch cane is an important summer food of black bears in the Great Dismal Swamp in Virginia and North Carolina [22,49]. Meadow voles, southern bog lemmings, and several species of shrew are frequently associated with cane in the Great Dismal Swamp [80]. Golden mice incorporate cane foliage into aboveground nests that are frequently supported by cane stems. American beaver consume living stems and foliage, particularly during late winter when other herbaceous vegetation is unavailable [74].

The southern subspecies of the timber rattlesnake is commonly referred to as the "canebrake rattlesnake" because of its affinity for cane habitats. Cottonmouths, copperheads, and pygmy rattlesnakes are also commonly found in canebrakes, presumably because of the abundance of birds and small rodents that are their prey. In a radio-telemetry study in Virginia, it was found that copperheads spent more time in small canebrakes than the adjacent lowland swamps [74].

At least 6 species of butterfly are considered obligate cane specialists: creole pearly eye, southern pearly eye, southern swamp skipper, cobweb little skipper, cane little skipper, and the yellow little skipper [7].

license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Key Plant Community Associations

provided by Fire Effects Information System Plants
More info for the terms: alliance, association, bog, codominant, cover, fern, forest, hardwood, herb, herbaceous, mesic, natural, series, shrub, shrubland, shrubs, swamp, tree, woodland, xeric

Extensive monotypic stands of cane known as canebrakes were a dominant landscape
feature in the southeastern United States at the time of European settlement.
Historical accounts indicated that hundreds of thousands of acres were
characterized by this ecosystem. Canebrakes disappeared rapidly following
European settlement because of a combination of overgrazing, altered burning
regimes, and agricultural land clearing [7,73,74,88]. It is estimated that there has been a 98% decline
in canebrakes communities [14,69]. Today cane exists as an important understory
component in a variety of deciduous and evergreen forest and shrub types.

Schafale and Weakley [84] describe 2
plant communities in the wet pine flatwood forests of North Carolina in which
cane is a codominant: longleaf pine (Pinus palustris)/cane and loblolly
pine (P. taeda)/cane. These communities are similar in composition with a
sparse canopy of pines and a mid-story dominated by cane. The understory is
typically a mixture of shrubs, including inkberry (Ilex glabra), creeping
blueberry (Vaccinium crassifolium), wax myrtle (Morella cerifera),
and blue huckleberry (Gaylussacia frondosa); and grasses, including
pineland threeawn (Aristida stricta), cutover muhly (Muhlenbergia
expansa), little bluestem (Schizachyrium scoparium), and toothache
grass (Ctenium aromaticum).


A cane shrubland alliance occurs on floodplains and alluvial soils in eastern
Oklahoma [52]. Common associates in this alliance include boxelder (Acer negundo),
river birch (Betula nigra),
smallspike false nettle (Boehmeria cylindrica),
jewelweed (Impatiens capensis), northern spicebush (Lindera benzoin),
and eastern poison-ivy (Toxicodendron radicans).


Kologski [60] describes a longleaf pine/cane community
type in the Green Swamp of the North Carolina coastal plain. This type is
described as a wetter pine savanna community.


In Missouri cane is a component of the swamp chestnut oak (Quercus michauxii)-Shumard's
oak (Q. shumardii)- sweetgum (Liquidambar styraciflua)/cane mesic
floodplain forest alliance [86].


Switch cane: Glitzenstein and others [40] describe a "globally rare" woodland association in
South Carolina of longleaf pine-switch cane-sweetgum-bushy bluestem
(Andropogon glomeratus)-hooded pitcher plant (Sarracenia minor).
In this association switch cane and bushy bluestem usually comprise the
majority of the plant cover, and the tree canopy cover is generally less than 10% [40].


A pond pine (P. serotina)/switchcane forest type occurs in the North
Carolina coastal plain where the pine overstory is typically scattered and
inkberry is an abundant shrub [54].


In addition to the plant communities discussed above, where cane is a dominant or codominant,
there are a variety of other communities in which cane occurs in
various levels of importance. Publications that discuss plant communities in which
cane and switch may occur are listed below. The list is neither restrictive nor all inclusive.



AL:


  • Cane―shortleaf pine (P. echinata)-hardwoods,
    southern red oak (Q. falcata)-mixed oak, chestnut oak (Q. prinus), loblolly
    pine-upland hardwoods, loblolly pine-lowland hardwoods, sweetgum-yellow-poplar (Liriodendron tulipifera),
    and swamp tupelo (Nyssa biflora)-sweetbay (Magnolia virginiana)
    forest types in the Clay Hills Region of the Hilly Coastal Plain Province [2]



  • bogs in the blackgum (N. sylvatica)-yellow-poplar-azalea
    (Rhododendron canescens) community type in broad swales that are
    often bisected by ephemeral streams



  • scarlet oak (Q. coccinea)-flowering
    dogwood (Cornus florida)-sweet goldenrod (Solidago odora)
    community type on upland sites and along perennial stream sites



  • mesic slash pine (P. elliottii)-longleaf pine-deerberry (V. stamineum)
    vegetation type in the southern loam hills [11]



  • sweetgum-water oak (Q. nigra)-red maple (Acer
    rubrum) stream bottom community type



  • white oak (Q. alba) mesic upland community type [43]



  • hemlock (Tsuga canadensis)-American beech
    (Fagus grandifolia) community type in the Warrior River basin [47]




FL:


  • Cane―hydric hammocks in a wetland forest type composed of live oak (Q. virginiana),
    laurel oak (Q. laurifolia), cabbage palmetto (Sabal palmetto),
    southern red-cedar (Juniperus silicicola), sweetgum, hornbeam (Carpinus
    caroliniana), loblolly pine, Florida elm (Ulmus americana var. floridana), and red maple [102]



  • cane often grows in association with the endangered
    conifer, Florida torreya (Torreya taxifolia), in the oak-gum-cypress
    (Taxodium spp.) or oak-pine types in the Apalachicola River basin in northern Florida [95]




GA:


  • Cane―the following communities in the Okefenokee Swamp:
    island hammocks in association with water oak, willow oak (Q. phellos),
    and hairytwig huckleberry (G. tomentosa); and moist
    pine barrens in association with pond pine, longleaf pine, slash pine,
    sweetbay, maleberry (Lyonia ligustrina), and shiny blueberry (V. myrsinites) [112]




LA:


  • Cane―in the Cat Island Swamp in the Mississippi River
    floodplain, cane occurs in the transition zone between swamp and mesic
    forest in a community that is a combination of the maple/yellow-poplar/oak
    complex and the hackberry (Celtis spp.)/elm/ash (Fraxinus
    spp.) community [24]




MS:


  • Cane―the following sites in the Mississippi River
    alluvial plain: thick loess sites dominated by sweetgum, basswood (Tilia
    spp.), water oak, yellow-poplar, cherrybark oak (Q. pagoda), elm, and
    bitternut hickory (Carya cordiformis); and thin loess sites dominated
    by American beech, blackgum, black oak (Q. velutina), sourwood (Oxydendrum
    arboreum), and sweetgum [10]



  • cane and dwarf palmetto (Sabal minor) are
    primary species of the shrub layer in an old-growth forest in west-central
    Mississippi dominated by sweetgum and box elder [25]



  • pitcher plant (Sarracenia alata) bogs in southern Mississippi [29]




NC:


  • Cane―wet and mesic pine savannas in the Green Swamp; wet
    pine savannas have occasional individuals of pond pine, pond cypress
    (Taxodium distichum var. nutans), and swamp tupelo and mesic savannas have a tree canopy cover
    of longleaf pine that rarely exceeds 40% [60,89,104]



  • pocosin or bayland xeric shrub bog community of
    inkberry-southern bayberry (Morella carolinensis) and wax
    myrtle-swamp titi (Cyrilla racemiflora)



  • toothache grass-panicgrass (Dichanthelium
    spp.) association, a xeric grass-sedge bog community



  • meso-xeric pine association typified by
    scattered longleaf and loblolly pines and an understory dominated by
    inkberry and wax myrtle [105]



  • honeycup (Zenobia pulverulenta) association in shrub bogs [12]



  • in the greater sandhills region of south-central
    North Carolina, cane is commonly found along blackwater streams in Atlantic
    white-cedar (Chamaecyparis thyoides) swamps [66,84]



  • mesic mixed hardwood forests on moist upland soils
    dominated by American beech, yellow-poplar, southern sugar maple (A. barbatum), white oak, and sweetgum



  • rocky bar and shore habitats adjacent to rivers and
    streams with a sparse shrub and herb layer; typical shrubs include hazel
    alder (Alnus serrulata), common buttonbush (Cephalanthus
    occidentalis), and yellowroot (Xanthorhiza simplicissima); silky
    willow (Salix sericea), black willow (S. nigra) and
    sedges (Carex spp.) dominate the herb layer



  • coastal plain levee forests on natural levee and
    point bar ridge deposits dominated by a mixture of bottomland hardwoods
    including American sycamore (Platanus occidentalis), sugarberry (Celtis
    laevigata), river birch, box elder, water hickory (Carya aquatica), and sweetgum



  • coastal plain hardwood forests on abandoned or
    natural levee deposits and point bar ridges dominated by laurel oak (Q. laurifolia),
    overcup oak (Q. lyrata), willow oak, water oak, red maple,
    loblolly pine, Atlantic white-cedar, and sweetgum



  • high pocosins typified by a dense shrub layer of
    fetterbush lyonia (L. lucida), swamp titi, inkberry, and laurel greenbriar (Smilax
    laurifolia)



  • pond pine woodlands, also called conifer-hardwood
    pocosin, where pond pine and loblolly bay (Gordonia lasianthus) are
    codominants in a open to nearly closed canopy [84]





  • Switch cane―the following communities in a tidewater swamp ecosystem
    on the Chewan River: the swamp tupelo-baldcypress (T. distichum)
    community, and the water tupelo (N. aquatica)-baldcypress-swamp tupelo community [1]




OK:



  • Cane―sugar maple (Acer saccharum)-white oak-mockernut
    hickory (Carya alba) forest association on floodplains and mesic slopes



  • sugar maple-boxelder forest association in stream
    margins and riparian corridors



  • river birch-American sycamore/hazel alder forest
    association in riparian corridors



  • American sycamore-boxelder forest association on wet
    to moist soils in floodplains



  • loblolly pine-sweetgum forest association in floodplains [52]




SC:


  • Cane―floodplain hardwood forest along the eastern edge of
    the Savannah River; overstory includes southern red oak, swamp chestnut oak,
    overcup oak, white oak, willow oak, laurel oak, sweetgum, red maple, and
    elms; understory includes dwarf palmetto [59]





  • Switch
    cane―
    in loblolly pine flatwoods of the lower coastal
    plain, switch cane is abundant along seeps and stream channels [36,37]




VA:


  • Cane―It is 1 of the most commonly occurring
    herbaceous species in the headwater bottoms of the inner coastal plain. The
    tree layer is typically composed of red maple, sweetgum, ash, and elm. Other herbaceous associates include asplenium ladyfern (Athyrium filix-femina var. asplenioides),
    netted chainfern (Woodwardia areolata), and cinnamon fern (Osmunda cinnamomea) [79]



  • wetter longleaf pine flatwood sites where pond pine
    becomes more dominant [76]




Atlantic and Gulf Coastal Plains:


  • Cane―in the mid-Atlantic flatwoods, cane may form dense
    thickets on wetter sites in the oak-hickory-pine association [13]



  • cabbage palmetto-slash pine type



  • Atlantic white cedar type



  • pond cypress type [107]



  • longleaf pine savannas [75]



  • pond pine pocosins [89,107]



  • old-growth bottomland hardwood forests dominated by
    sweetgum and water oak [108]



  • the following associations in coastal plain alluvial
    floodplains and "high elevation" floodplains of natural levees, flats and
    higher terraces: water oak-swamp chestnut-spruce pine (Pinus glabra)
    and swamp chestnut oak-southern magnolia (Magnolia grandiflora)-American
    holly (Ilex opaca) [109]



  • longleaf pine-slash pine-bluestem (Schizachyrium
    spp. and Andropogon spp.) type [45]



  • a bottomland oak association with a loblolly
    pine-dominant overstory; overstory associates include Florida maple, red
    maple, water oak, white oak, yellow-poplar, green ash (F. pennsylvanica),
    and American sycamore [90]



  • the evergreen shrub swamp community of
    inkberry-swamp titi-honeycup [71]



  • the evergreen bay forest type of loblolly bay-pine-sweetbay-redbay (Persea borbonia) [65]





  • Switch
    cane―
    the pocosin woodland series type
    of pond pine-loblolly bay-redbay [70]


license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Life Form

provided by Fire Effects Information System Plants
More info for the term: graminoid

Graminoid
license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Management considerations

provided by Fire Effects Information System Plants
More info for the terms: prescribed fire, restoration

More than 98% of all large canebrakes in the U.S. have been lost since the
time of European settlement, and canebrakes are considered "critically
endangered" ecosystems as defined by the National Biological Service. Large
canebrakes historically performed a valuable role in protecting water quality by
their ability to mediate sedimentation and nutrient pollution. They also
provided a level of flood control in low-lying areas [69]. The loss of
canebrakes has left many areas more vulnerable to damage from sedimentation,
nutrient pollution, and flood damage, and the loss of cane habitat has been
strongly tied to declines in several associated wildlife species [69,88]. In
recent years there has been significant interest in the restoration of
canebrakes through the use of prescribed fire and artificial propagation, and
continued efforts are needed to assure the survival of this ecosystem [5].
license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Other uses and values

provided by Fire Effects Information System Plants
Native Americans utilized cane for a variety of purposes. The stems were used to make spears, arrows, blowguns, pipes, flutes, and fish traps. The leaves were woven into baskets and mats [94]. It is estimated that Native Americans burned cane every 7 to 10 years to maintain and expand canebrakes [7,26]. Cane has also been used as a potherb and for fishing poles [51].
license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Phenology

provided by Fire Effects Information System Plants
More info on this topic.

More info for the term: seed

Foliage production occurs from April to early July, and green foliage is held well into winter and even until the following spring on protected sites [91]. Flowering in cane is rare, but it may occur from March to May in Florida [16,48] and from April to July in the northern extent of its range [77,110]. The flowering period may continue for a year [51]. Seeds mature about 1 month following flowering, and seed germination may occur within a few days of the seed reaching the ground [53,55]. Aerial stems, and the rhizomes attached to them, die after flowering [42,53,64,77]. New stems arise from rhizomes from spring to mid-summer, and have been observed to elongate as much as 1.5 inches (3.8 cm) in 24 hours [53]. Stands usually decline in 3 to 4 years because of gradual mortality and replacement [55].
license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Plant Response to Fire

provided by Fire Effects Information System Plants
More info for the term: density

Fire stimulates cane sprouting [21]. Cane will start to sprout soon following a spring burn, and stem density may return to prefire levels by mid-summer of the same season [91]. Following a winter fire in North Carolina, cane stems grew as much as 1.5 inches in 24 hours in the following spring [55].>

Cane may flower in response to burning [49,63,88]. Seedlings occasionally establish after a fire, but the seedlings rarely develop into full-sized plants [54].

license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Post-fire Regeneration

provided by Fire Effects Information System Plants
More info for the terms: herb, rhizome, root crown

POSTFIRE REGENERATION STRATEGY [96]:
Rhizomatous herb, rhizome in soil
Surface rhizome/chamaephytic root crown in organic mantle or on soil surface
license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Regional Distribution in the Western United States

provided by Fire Effects Information System Plants
More info on this topic.

This species can be found in the following regions of the western United States (according to the Bureau of Land Management classification of Physiographic Regions of the western United States):

BLM PHYSIOGRAPHIC REGIONS [3]:




None
license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

States or Provinces

provided by Fire Effects Information System Plants
(key to state/province abbreviations)
UNITED STATES AL AR DE FL GA IL IN KS KY LA MD MS MO NJ NY NC OH OK SC TN TX VA WV              
license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Successional Status

provided by Fire Effects Information System Plants
More info on this topic.

More info for the terms: bog, cover, forest, hardwood, mesic, sere, shrub, shrubs, succession, swamp, tree, xeric

SITE CHARACTERISTICS:
Cane inhabits low-lying, moist to wet sites, including low woodlands of various mixtures, woodlands on mesic and sub-mesic slopes and uplands, river and stream banks, floodplains, levees, shrub-tree bogs and bays, swamplands, sloughs, bayous and pocosins, and mesic to wet savannahs [18,41,42,84,104,109]. Cane will grow on xeric and sub-xeric sites, but it thrives best on wetter sites that are typically seasonally flooded or saturated [75]. The water level often remains at or near the soil surface for extended periods during the wet season but falls well below the soil surface later in the growing season [84,91,102].

Although cane thrives best on well-drained loams or silt loams [43,90], it grows in a variety of soil types ranging from clay to sand and has a wide tolerance of soil nutrient conditions [14]. Soils are often poorly drained, highly acidic, and organic, peaty, or mucky [84,92,105]. On some sites, sandy surface soils overlie loamy or clayey subsoils. The heavier subsoil tends to retain moisture and nutrients during dry periods [6,40]. Cane has been observed growing on sandy soils with a mildly alkaline pH of 7.8 [31].

Cane is found at elevations ranging from sea level in southern floodplains to 2,000 feet (610 m) in the Appalachian Mountains. It has a broad climate tolerance and can withstand temperatures ranging from -9.4 to 106 °F (-23 to 41 °C) [18].


The canebrake community is fire dependent [34,40]. Historically, fire probably maintained canebrakes in a secondary successional sere [7]. Cane sprouts so prolifically following fire that it quickly achieves dominance after a burn, and the dense thickets suppress the growth of other vegetation for many years [32]. In the Southeast, canebrakes can form an ecotone transitional between savannas and wetlands such as pocosin, bay-gall, bay forest, or swamp forest. With different fire frequencies, canebrakes may alternate with these types over time. In the pine pocosins and shrub bogs of the Atlantic Coastal Plain, fire maintains cane dominance over evergreen shrubs such as inkberry, swamp titi, sweetbay, and redbay. Frequent fire can eliminate cane and favor a transition to a grass-sedge bog community. In the absence of fire, cane is gradually replaced by shrubs and trees [21,33,60,74,89,105,106]. Canebrakes succeed to multistoried wooded communities such as bottomland hardwood, pocosin, pond pine forest, red maple forest, and bay forest [34].

Cane is fairly shade tolerant. It thrives best in the open or under light tree cover, but can persist under dense canopies of up to 80% cover [27,54,62]. The ability of cane to survive under tree cover allows it to expand readily if the trees are removed [32]. For example, a cane stand expanded "readily" following logging of the tree overstory in blackgum and Atlantic white-cedar swamps in the Great Dismal Swamp, North Carolina [71].

Cane does not spread rapidly into either early or late successional forest types. It is hypothesized that cane was formerly concentrated in ecotones, between frequently disturbed areas and less disturbed forests of sugar maples, hickories, ashes, and oaks. The ecotonal vegetation may have been relatively stable, being maintained by small-scale oscillations of forest boundaries rather than long-term directional succession [9].

license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Synonyms

provided by Fire Effects Information System Plants
Species synonyms―

Arundinaria macrosperma (Michx.) [8,18,38,39,113]

Arundo gigantea Walter [18,64]

   = Arundinaria gigantea (Walt.) Muhl. [38,39,48,58,64,97,110,114]

Subspecies synonyms―

A. tecta (Walt.) Muhl. [38,39,48,51,77,114]

Arundo tecta Walt. [18,58,64,101]

   = Arundinaria gigantea (Walt.) Muhl. subsp.
tecta (Walt.) McClure [16,42,58,114]

A. gigantea (Walt.) Muhl ssp. macrosperma (Michx.) McClure [16,42,64]

   = A. gigantea (Walt.) Muhl. subsp. gigantea [58,64,114]
license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Taxonomy

provided by Fire Effects Information System Plants
More info for the terms: presence, rhizome, seed

The scientific name of cane is Arundinaria gigantea (Walt.) Muhl. (Poaceae).
Some systematists recognize 2 subspecies of cane [58,64,114]:

A. gigantea subsp. gigantea (Walt.) Muhl., giant cane

A. gigantea subsp. tecta (Walt.) McClure, switch cane


The taxonomy of Arundinaria species in the United States has been
confusing and poorly understood. Switchcane and giant cane are sometimes considered
distinct species [8,18,38,39,46,48,51]. Plant height and the height,
position of the seed heads, and rhizome structure (air canals) are
sometimes used to differentiate the infrataxa of cane in the United States.
However, plants often exhibit wide ranges in height growth on different sites,
and flower and seed production tends to be sporadic or rare. The presence or
absence of air canals in the rhizomes is another primary factor used to differentiate between subspecies; however, this
criterion is also somewhat inconclusive [8,46,64]. Hughes [53] commented on the
difficulty of cane taxonomy by saying, "it seems that the criteria used to
differentiate A. gigantea from A. tecta are of
questionable validity". Gilly [38] was 1 of the early taxonomists to suggest
that only 1 species of Arundinaria was native to North America. In much
of the literature, both A. gigantea and A. gigantea subsp. gigantea
are called "giant cane", and A. gigantea subsp. tecta
is usually referred to as "switch cane". For this review, the
species in general is called cane,
A. gigantea subsp. gigantea is called giant cane, and
A. gigantea subsp. tecta is called switch cane.

license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Value for rehabilitation of disturbed sites

provided by Fire Effects Information System Plants
More info for the terms: culm, density, hardwood, restoration, rhizome, seed

High culm density, rapid lateral spread, and rapid height growth make cane a good choice for riparian buffer zones. Cane's compact network of rhizomes provides streambank stabilization, sediment retention, and bioaccumulation of nutrients and toxins [23]. Without the mediation effects of cane, there is an increased potential for damage to the riparian system. Research has shown that cane can significantly reduce nitrogen, phosphorus, and sediment in surface runoff and nitrogen and phosphorus in groundwater. In 1 study around row-crop fields in southern Illinois, cane was effective in reducing ground water nitrate levels by 90%, and dissolved reactive phosphorus concentrations by 28% [5,87].

Cirtain and others [14] conducted greenhouse studies on the germination and growth of cane seedlings. Seedlings were able to survive both flooding and drought, but grew better under well-drained conditions. Although cane can be propagated by seed, seed is sporadically produced and has low viability. Therefore, artificial propagation is best achieved by vegetative means including rhizome cuttings and clump division [88]. Transplanting stem clumps is often more successful than using individual stems [31]. The survival of transplanted cane varies widely, and slow growth is a common problem. Care should be taken to keep transplant stock from drying out. Amendments of hardwood mulch and composted manure may help increase the success of transplantings [23]. Because propagation of cane by digging and transplanting culms is labor intensive, cumbersome, and costly, research is being carried out to develop procedures for producing machine-plantable rhizome stock for use in canebrake restoration [115].

license
cc-publicdomain
bibliographic citation
Taylor, Jane E. 2006. Arundinaria gigantea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/arugig/all.html

Comprehensive Description

provided by Smithsonian Contributions to Botany
Arundinaria gigantea ssp. macrosperma (Michaux) McClure

Arundinaria macrosperma Michaux, 1803, I:74 [as to type].

TYPE (elig. Hitchcock, 1908:156).—(P) “Herbier de l’Amerique Septentrionale d’André Michaux.” “Gramen altissimum ramosum [Michaux’s symbol for undershrub]. Hab. a Virginia ad Floridam et in occidentalibus [a phrase is here crossed out and illegible] juxta fluvios ab Illinoensibus ad ostium Misissipi [Michaux’s symbol for perennial plant.]” The specimen is a leafy flowering branch with leaf blades and florets detached.

ISOTYPE (nunc elig.).—A specimen that quite clearly represents a duplicate from the same Michaux collection as that which yielded the lectotype is preserved at the Paris Herbarium. A printed label on the sheet bears the following information:
license
cc-by-nc-sa-3.0
bibliographic citation
McClure, F. A. 1973. "Genera of Bamboos Native to the New World (Gramineae: Bambusoideae)." Smithsonian Contributions to Botany. 1-148. https://doi.org/10.5479/si.0081024X.9

Physical Description

provided by USDA PLANTS text
Perennials, Aquatic, growing in or on water, Aquatic, leaves emergent, Terrestrial, not aquatic, Rhizomes present, Rhizome short and compact, stems close, Rhizome elongate, creeping, stems distant, Stems woody, Stems nodes swollen or brittle, Stems erect or ascending, Stems solitary, Stems caespitose, tufted, or clustered, Stems compressed, flattened, or sulcate, Stems branching above base or distally at nodes, Stem internodes hollow, Stems with i nflorescence 1-2 m tall, Stems with inflorescence 2-6 m tall, Stems with inflorescence 6 m or taller, Stems, culms, or scapes exceeding basal leaves, Leaves mostly cauline, Leaves conspicuously 2-ranked, distichous, Leaves pseudo-petiolate, petiole attached to sheath, Leaves sheathing at base, Leaf sheath mostly open, or loose, Leaf sheath smooth, glabrous, Leaf sheath and blade differentiated, Leaves borne on branches, Leaf blades disarticulating from sheath, deciduous at ligule, Leaf blades linear, Leaf blades lanceolate, Leaves with distinct crossveins, net-like transverse veins, Leaf blade auriculate, Leaf auricules setose or ciliate, Leaf blades 1-2 cm wide, Leaf blades 2 or more cm wide, Leaf blades mostly flat, Leaf blades more or less hairy, Ligule present, Ligule an unfringed eciliate membrane, Inflorescence terminal, Inflorescence racemose, Inflorescence an open panicle, openly paniculate, branches spreading, Inflorescence solitary, with 1 spike, fascicle, glomeru le, head, or cluster per stem or culm, Inflorescence single raceme, fascicle or spike, Inflorescence with 2-10 branches, Inflorescence a single spikelet, Flowers bisexual, Spikelets laterally compressed, Spikelet less than 3 mm wide, Spikelets with 3-7 florets, Spikelets solitary at rachis nodes, Spikelets all alike and fertille, Spikelets bisexual, Spikelets disarticulating above the glumes, glumes persistent, Spikelets disarticulating beneath or between the florets, Rachilla or pedicel hairy, Glumes present, empty bracts, Glumes 2 clearly present, Glumes equal or subequal, Glumes shorter than adjacent lemma, Glume surface hairy, villous or pilose, Glumes 4-7 nerved, Glumes 8-15 nerved, Lemma similar in texture to glumes, Lemma 8-15 nerved, Lemma body or surface hairy, Lemma apex acute or acuminate, Lemma awnless, Lemma mucronate, very shortly beaked or awned, less than 1-2 mm, Lemma distinctly awned, more than 2-3 mm, Lemma with 1 awn, Lemma margins thin, lying flat, Lemm a straight, Callus or base of lemma evidently hairy, Callus hairs shorter than lemma, Palea present, well developed, Palea membranous, hyaline, Palea about equal to lemma, Palea 2 nerved or 2 keeled, Palea auriculate or bowed out at base, Stamens 3, Styles 1, Stigmas 3, Fruit - caryopsis, Caryopsis ellipsoid, longitudinally grooved, hilum long-linear.
license
cc-by-nc-sa-3.0
compiler
Dr. David Bogler
source
Missouri Botanical Garden
source
USDA NRCS NPDC
original
visit source
partner site
USDA PLANTS text

Arundinaria gigantea

provided by wikipedia EN

Arundinaria gigantea is a species of bamboo known as giant cane (not to be confused with Arundo donax), river cane, and giant river cane. It is endemic to the south-central and southeastern United States as far west as Oklahoma and Texas and as far north as New York. Giant river cane was economically and culturally important to indigenous people, with uses including as a vegetable and materials for construction and craft production. Arundinaria gigantea and other species of Arundinaria once grew in large colonies called canebrakes covering thousands of acres in the southeastern United States, but today these canebrakes are considered endangered ecosystems.[2][3]

Description

This bamboo is a perennial grass with a rounded, hollow stem which can exceed 7 cm (2.8 in) in diameter and grow to a height of 10 m (33 ft). It grows from a large network of thick rhizomes. The lance-shaped leaves are up to 30 cm (12 in) long and 4 cm (1.6 in) wide. The inflorescence is a raceme or panicle of spikelets measuring 4 to 7 cm (1.6 to 2.8 in) in length. An individual cane has a lifespan of about 10 years.[2][4] Most reproduction is vegetative as the bamboo sprouts new stems from its rhizome. It rarely produces seeds and it flowers irregularly. Sometimes it flowers gregariously.[5] Some types of non-native bamboos are confused with this native cane.[6]

Habitat and ecology

During the last Glacial Maximum, the range of this plant was restricted to a narrow strip along the Gulf Coast. When the ice sheets retreated, it spread northward to its current range.[7]

This native plant is a member of several plant communities today, generally occurring as a component of the understory or midstory. It grows in pine forests dominated by loblolly, slash, longleaf, and shortleaf pine, and stands of oaks, cypress, ash, and cottonwood. Other plants in the understory include inkberry (Ilex glabra), creeping blueberry (Vaccinium crassifolium), wax myrtle (Morella cerifera), blue huckleberry (Gaylussacia frondosa), pineland threeawn (Aristida stricta), cutover muhly (Muhlenbergia expansa), little bluestem (Schizachyrium scoparium), and toothache grass (Ctenium aromaticum). Cane communities occur on floodplains, bogs, riparian woods, pine barrens and savannas, and pocosins. It grows easily in flooded and saturated soils.[2]

Cane is considered to be a fire dependent species. Canebrakes are maintained by a fire regime where intervals between burns range from 2-8 years.[8]

Arundinaria gigantea in Natchez, Georgia, USA

Giant cane has been documented as providing food and shelter for 70 species, including six butterfly species that depend almost exclusively on it for food.[9] An example of a butterfly that requires cane as a food plant is the southern pearly eye.[6] Canebrakes are an important habitat for the Swainson's, hooded, and Kentucky warblers, as well as the white-eyed vireo. The disappearance of the canebrake ecosystem may have contributed to the rarity and possible extinction of the Bachman's warbler, which was dependent upon it for nesting sites.[2][10] Giant cane was also one of three major sources of food for passenger pigeons, and the disappearance of canebrakes may have helped cause its extinction.[9]

Giant cane may be prevented from growing by invasive plants like quackgrass that spread horizontally, but tall native plants such as big bluestem and ironweed have been reported to have a positive effect.[11]

Arundinaria gigantea at The Botanical Gardens at Asheville, Asheville, North Carolina, USA

Conservation

Canebrakes declined after European settlement of the American southeast. Factors involved in the decline include the introduction of livestock such as cattle, which eagerly graze on the leaves. The cane was considered a good forage for the animals until overgrazing began to eliminate canebrake habitat.[2] Other reasons for the decline include the conversion of the land for agriculture[12] and fire suppression.[13]

Uses

There are many human uses for the cane. The Cherokee, particularly the Eastern Band of Cherokee Indians,[14] use this species in basketry.[15] The Cherokee historically maintained canebrakes with cutting and periodic burning, a practice which stopped with the European settlement of the land.[13] The elimination of cane habitat has nearly resulted in the loss of the art of basketmaking,[14][16] which is important for the economy of the Cherokee today.[17] The art of river cane basketry is also important to the Choctaw, whose artisans have faced similar problems due to the increasing disappearance of canebrakes.[18] The cane was also used by groups such as the Cherokee, Seminole, Chickasaw and Choctaw to make medicine, blowguns, bows and arrows, knives, spears, flutes, candles, walls for dwellings,[15] fish traps, sleeping mats, tobacco pipes,[17] and food.[9]

In 2022, the Cherokee Nation signed an agreement with the National Park Service to allow collection of 76 culturally important plant species in the Buffalo River National Park in Arkansas, including A. gigantea.[19]

Giant cane is of interest due to its extraordinary capability to reduce both sediment loss and nitrate runoff when planted as a "buffer" between waterways and agricultural fields. A giant cane buffer zone can reduce nitrate pollution in ground water by 99%.[9] Stands of cane are superior even to forests as protective buffers around waterways, absorbing sediment and nitrate pollution and dramatically slowing the rate at which runoff enters the stream or river.[20]

References

  1. ^ Arundinaria gigantea, Giant cane. NatureServe, Arlington, Virginia., NatureServe, 1984, retrieved 15 November 2021
  2. ^ a b c d e Jane E. Taylor (2006). "Arundinaria gigantea In: Fire Effects Information System". U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory.
  3. ^ Triplett, J.K.; Weakley, A.S.; Clark, L.G. (2006), "Hill cane (Arundinaria appalachiana), a new species of bamboo (Poaceae: Bambusoideae) from the southern Appalachian Mountains" (PDF), Sida, 22 (1): 79–95, archived from the original (PDF) on 2007-09-30, retrieved 2007-07-14
  4. ^ "Arundinaria gigantea and A. tecta". Grass Manual Treatment. Archived from the original on June 13, 2012.
  5. ^ Platt, Steven G.; Brantley, Christopher G.; Rainwater, Thomas R. (2004). "Observations of flowering cane (Arundinacea gigantea) in Louisiana, Mississippi, and South Carolina" (PDF). The Proceedings of the Louisiana Academy of Sciences (66): 17–25. Archived from the original (PDF) on 2012-04-26.
  6. ^ a b "Arundinaria gigantea | Center for Aquatic and Invasive Plants | University of Florida, IFAS". plants.ifas.ufl.edu. Retrieved 2023-04-20.
  7. ^ Owens, Chelsea (11 February 2021). "Post-Pleistocene Distribution of Arundinaria gigantea in Northeastern Alabama". Jsu Student Symposium 2021.
  8. ^ "Arundinaria gigantea". fs.usda.gov.
  9. ^ a b c d Barret, Richard; Grabowski, Janet; Williams, M.J. "Giant Cane and Other Native Bamboos: Establishment and Use for Conservation of Natural Resources in the Southeast" (PDF). ncrs.usda.gov. U.S. Department of Agriculture, Natural Resources Conservation Service. Retrieved 27 November 2022.
  10. ^ "Bachman's Warbler". BirdLife International Species Profile.
  11. ^ Campbell, Julian. "Growth of Cane (Arundinaria sensu stricto), the Mysterious Native Bamboo of North America" (PDF).
  12. ^ Dattilo, Adam J.; Rhoades, Charles C. (December 2005). "Establishment of the Woody Grass Arundinaria gigantea for Riparian Restoration" (PDF). Restoration Ecology. 13 (4): 616–622. doi:10.1111/j.1526-100X.2005.00079.x. ISSN 1061-2971. S2CID 86518356.
  13. ^ a b Bugden, Joni L.; Storie, Christopher D.; Burda, Carey L. (2011). "Mapping Existing and Potential River Cane (Arundinaria gigantea) Habitat in Western North Carolina". Southeastern Geographer. 51 (1): 150–164. doi:10.1353/sgo.2011.0000. ISSN 1549-6929. S2CID 129900940.
  14. ^ a b Lori Valigra (November 7, 2005), In Cherokee country, reviving a tree's deep roots, National Geographic News, archived from the original on 2012-02-01
  15. ^ a b Arundinaria gigantea. The Native American Ethnobotany Database. Retrieved 03-16-2018.
  16. ^ "WCU helps Cherokee artists harvest natural materials". Western Carolina University Office of Public Relations. November 6, 2008. Archived from the original on 2012-12-15.
  17. ^ a b "Preserving the past: A guide for North Carolina landowners". North Carolina Cooperative Extension.
  18. ^ Fabvssa, Iti. "Makers and Masterpieces: Rivercane basketry at the Smithsonian". choctawnation.com.
  19. ^ "Cherokee Nation, park service reach deal on plant gathering within Buffalo National River". The Arkansas Democrat-Gazette. 20 April 2022.
  20. ^ "Canebrake Restoration". friendsofthecache.org. Retrieved 27 November 2022.
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Arundinaria gigantea: Brief Summary

provided by wikipedia EN

Arundinaria gigantea is a species of bamboo known as giant cane (not to be confused with Arundo donax), river cane, and giant river cane. It is endemic to the south-central and southeastern United States as far west as Oklahoma and Texas and as far north as New York. Giant river cane was economically and culturally important to indigenous people, with uses including as a vegetable and materials for construction and craft production. Arundinaria gigantea and other species of Arundinaria once grew in large colonies called canebrakes covering thousands of acres in the southeastern United States, but today these canebrakes are considered endangered ecosystems.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN