dcsimg
Image of Ceratitis
Creatures » » Animal » » Arthropods » » Hexapods » Insects » Winged Insects » » Endopterygotes » Flies » » Fruit Flies »

Mediterranean Fruit Fly

Ceratitis capitata (Wiedemann 1824)

Ceratitis capitata (Wiedemann, 1824)

provided by Afrotropical Fruitfly Project
Ceratitis (Ceratitis) capitata (Wiedemann)
Tephritis capitata Wiedemann, 1824: 55.
Body length: 4.00 (3.45-4.60) mm; wing length: 4.12 (3.65-4.55) mm.

Male
Head. Antenna yellow or more orange; first and second segment and base of third segment sometimes darker. Third antennal segment twice as long as second segment. Arista with short hairs, mainly on base and only distinct dorsally. Frons convex to flat; yellow, sometimes with darker orange or orange-brown patches including darker band near antennal implant, occasionally with faint silvery shine; with short scattered hairs which are largely the same colour as frons. Frontal and ocellar bristles black; lower orbital modified, stem pale and shorter than arista with apical end dark and diamond-shaped; upper orbital weakly developed, black. Face yellow-white. Genal bristle pale, genal setulae pale or reddish, weakly developed. Postocellar and outer vertical pale. Thorax. Postpronotum white, with distinct black spot. Mesonotum:
ground colour black, microtrichiae pattern silvery with ashgrey shine, spots black except sutural white spots, prescutellar white markings merged. Scapular setae pale. Scutellum yellow-white, basally with two dark spots, separate or narrowly touching, apically with three merged spots, only slightly incised. Anepisternum pale with lower half darker yellow, pilosity variable but at least partly dark in lower half. Legs yellow; setation typical for subgenus, mainly pale especially on femora. Fore femur posterodorsally with bush of longer orange-coloured hairs along entire length, basally these hairs darker red or brown but not distinct black; posteriorly hairs much shorter; ventral spines yellow-orange; anteroventral row of hairs short and yellow-orange. Hind femur with longer hairs dorsally and ventrally on apical fourth. Wing. marginal band usually with clear and complete interruption, occasionally narrowly or partly touching; cubital band free; medial band absent; crossvein r-m at or near middle of discal cell. Vein R  beyond or equal with crossvein r-m. Orientation crossvein dm-cu variable. Abdomen. Yellow. Setation and banding typical for subgenus.
Female
As in male except for the following characters:
Third antennal segment in general darker than in male. Frons sometimes with darker hairs; darker patches never as outspoken as in male. Orbitals not modified, well developed. Genal setulae darker and strongly developed. Anepisternum without darker pilosity. Legs without feathering; ventral spines on fore femur sometimes partially dark. Oviscape shorter than abdominal terga.
(Description after De Meyer, 2000)
See description of Ceratitis capitata (Wiedemann, 1824) in source PDF.
license
cc-by-nc-sa-3.0
copyright
Marc de Meyer, MRAC
editor
Marc de Meyer

Trophic Strategy

provided by Animal Diversity Web

Among the Tephritidae, medflies are the most polyphagous species. This means that they feed from the widest variety of host-fruits. Over 200 types of fruits and vegetables have been recorded as hosts for this parasitic species. Species consumed include fruits of the following plant families: Anacardiaceae, Cucurbitaceae, Loganiaceae, Meliaceae, Oleaceae, Podocarpaceae, Rosaceae, Rubiacaea, Sapotaceae and Solanaceae. Though preferences differ geographically, thin-skinned, slightly hard, ripe, and succulent fruits are desirable.

Adult (mature) and larval (immature) stages differ in their feeding habits. As mentioned under “Development”, larvae eat their way through the fleshy host fruit. At this immature stage, nutrition is essential and will determine adult size, time of development, and the percentage of larvae that emerge. Studies have shown that diets with higher concentrations of glucose and sucrose lead to better development than those containing high starch or maltose concentrations. Adult medflies require carbohydrates from the juices of ripe fruit, and protein from bird feces and decomposing fruit. Adults feed in mid-morning and late afternoon.

Adult medflies prefer the portion of the fruit in which there is more nutritive value. For example, the lower portions of orange and papaya fruits contain the bulk of the nutrition. If placed on the top portion of these fruits, a medfly will move to the lower part. In contrast, flies placed on the lower portion of the fruit remain there to feed.

Plant Foods: fruit; sap or other plant fluids

Other Foods: dung

Primary Diet: herbivore (Frugivore )

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Allen, A. 2006. "Ceratitis capitata" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ceratitis_capitata.html
editor
Nancy Shefferly, Animal Diversity Web
author
Amy Allen, Kalamazoo College
editor
Ann Fraser, Kalamazoo College
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Untitled

provided by Animal Diversity Web

Because C. capitata has such negative impact on agricultural economies around the world, research into cotrol of this species is widespread. An important step in limiting crop damage inflicted by medflies is field sanitation. This involves destroying unmarketable and infested fruits, burying them one meter under soil with lime to kill any larvae present in the fruit. Also, reducing food sources (i.e. keeping the quantity of ripe fruit to a minimum) through weekly harvestings is helpful. In areas of severe infestation, further techniques are needed to eliminate medflies.

Insecticides are used, but can be ineffective since egg-laying takes mere minutes. Although the chemicals kill the adult pests, they often work only after eggs have been laid. Bait insecticides containing proteinaceous liquid attractants encourage females to feed. Such females may die before oviposition, reducing crop damage caused by larvae. Disadvantages of insecticide use include: residues in food, soil and water pollution, and the evolution of resistance to pesticide in medfly populations.

Releasing parasitoids (such as the wasps mentioned under “Predators”) is another method of control that may be employed. Research conducted in Hawaii showed that approximately twenty thousand wasp parasitoids (Diachasmimorpha tryoni) per square kilometer per week provided effective medfly suppression.

One of the most successful techniques of control, especially in combination with the release of parasitoids, is the release of sterile males. These sterile males mate with wild females who, in turn, produce infertile eggs.Such eggs do not hatch into destructive larvae. Difficulties in the production of sterile males have limited the utility of this method.

There is sometimes confusion between C. capitata and other species of "true fruit flies" (family Tephritidae) and Drosophila macquarti, the "fruit fly" that has been widely used in genetic research (along with other species of Drosophila). Despite the similar common names, Drosophila is in a different family, the Drosophilidae, and is not a significant agricultural pest. The Drosophila species that feed on fruit feed mainly on yeasts and other microbes that grow on decaying fruit, not on the fruit itself. They may be a household nuisance, but unlike Ceratitis capitata and other tephritids, they don't damage intact fruit.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Allen, A. 2006. "Ceratitis capitata" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ceratitis_capitata.html
editor
Nancy Shefferly, Animal Diversity Web
author
Amy Allen, Kalamazoo College
editor
Ann Fraser, Kalamazoo College
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Behavior

provided by Animal Diversity Web

Male medflies use chemical, visual, acoustic, and behavioral (e.g. wing waving) signals in their sexual communication with females. See “Reproduction: Mating Systems” for information on both male-female and male-male (marking of leaves with chemical to stake out mating ground territory) communication. In addition to these communication pathways, it is likely that some tactile communication occurs during mating itself.

Communication Channels: visual ; tactile ; acoustic ; chemical

Other Communication Modes: pheromones ; scent marks ; vibrations

Perception Channels: visual ; ultraviolet; tactile ; acoustic ; vibrations ; chemical

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Allen, A. 2006. "Ceratitis capitata" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ceratitis_capitata.html
editor
Nancy Shefferly, Animal Diversity Web
author
Amy Allen, Kalamazoo College
editor
Ann Fraser, Kalamazoo College
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Conservation Status

provided by Animal Diversity Web

This species is abundant around the world, and not considered in need of conservation. It is a pest, and the target of strong efforts to reduce its abundance and distribution.

US Federal List: no special status

CITES: no special status

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Allen, A. 2006. "Ceratitis capitata" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ceratitis_capitata.html
editor
Nancy Shefferly, Animal Diversity Web
author
Amy Allen, Kalamazoo College
editor
Ann Fraser, Kalamazoo College
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Life Cycle

provided by Animal Diversity Web

Medflies undergo a complete metamorphosis, beginning life as larvae and transforming into completely different-looking adult fruit flies. Females lay their eggs approximately 1 mm beneath the skin of host fruit. Although each female lays only 2 to 10 eggs in a given fruit, multiple females may lay their eggs in the same location, so that the slim, smooth, white eggs, about 0.1 cm long, may be clustered together in a single spot of seventy-five or more.

After 1.5 to 3 days (longer if the temperature is lower) the eggs hatch. The larvae carve tunnels, eating their way through the fruit. Larval life may last a mere 6 to 10 days (when temperature is around 25ºC). Along with temperature, the type of host fruit affects the length of the larval stage. In citrus fruits, 14 to 26 days may be required to reach pupation. Development in a green peach is completed in 10 to 15 days.

There are three larval stages, or instars. In the first, larvae are slender, cream colored, translucent, and about 0.1 cm long. In the second instar, larvae are partly transparent, revealing the fruit in the gut. By the third instar, larvae are opaque white and 0.6 to 0.8 cm long. These larvae can be distinguished from other fruit fly larvae by their thoracic spiracles, with 7 to 11 small protruding tubules.

Most larvae begin to pupate at sunrise, an inch or two into the soil. The pupal stage lasts from 6 to 13 days at around 24.4ºC. This range significantly increases (possibly to about 19 days) when the temperature drops to around 20.5ºC. The pupal stage is resistant to temperature extremes and dessication, so it may last much longer if conditions are not right for emergence. It is typical for the new adult medflies to surface on warm mornings. At this early adult stage, they are capable of flying short distances, and may disperse further distances via the wind.

Development - Life Cycle: metamorphosis

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Allen, A. 2006. "Ceratitis capitata" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ceratitis_capitata.html
editor
Nancy Shefferly, Animal Diversity Web
author
Amy Allen, Kalamazoo College
editor
Ann Fraser, Kalamazoo College
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

Of all true fruit flies, medflies are the most rampant pest, attacking practically all with a fleshy fruit species. Economically, medflies impact humans by damaging crops and making the fruit unmarketable.

Fruit-growers and their governments around the world spend millions of dollars a year trying to control this pest and prevent it from spreading to new locations.

Negative Impacts: crop pest

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Allen, A. 2006. "Ceratitis capitata" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ceratitis_capitata.html
editor
Nancy Shefferly, Animal Diversity Web
author
Amy Allen, Kalamazoo College
editor
Ann Fraser, Kalamazoo College
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

There are no known positive effects of Ceratitis capitata on humans.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Allen, A. 2006. "Ceratitis capitata" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ceratitis_capitata.html
editor
Nancy Shefferly, Animal Diversity Web
author
Amy Allen, Kalamazoo College
editor
Ann Fraser, Kalamazoo College
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Associations

provided by Animal Diversity Web

In their natural environment, these flies are parasitic on host plants, but are not often harmful to plant populations. They may reduce seed dispersal by spoiling fruit, but they don't necessarily prevent seed germination. They are prey for a wide variety of insect predators and parasites. They are much more significant in agricultural ecosystems, where they can be a major pest of fruit crops (see below).

Ecosystem Impact: parasite

Species Used as Host:

  • Anacardiaceae.
  • Cucurbitaceae
  • Loganiaceae
  • Meliaceae
  • Oleaceae
  • Podocarpaceae
  • Rosaceae
  • Rubiacaea
  • Sapotaceae
  • Solanaceae

Mutualist Species:

  • There are no known mutualists with this species.

Commensal/Parasitic Species:

  • wasps
license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Allen, A. 2006. "Ceratitis capitata" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ceratitis_capitata.html
editor
Nancy Shefferly, Animal Diversity Web
author
Amy Allen, Kalamazoo College
editor
Ann Fraser, Kalamazoo College
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Distribution

provided by Animal Diversity Web

The oldest populations of mediterranean fruit flies (a.k.a. medflies) can be traced back to the African tropics in the Ethiopian biogeographic region. This species is native to both the Ethiopian and Palearctic regions, and introduced populations have since been discovered in all of the biogeographic regions.

Transportation of fresh fruit by air (either commercially, or incidentally by travelers) has greatly increased the risk of accidental introduction of this species into other parts of the world, and strong efforts are made to prevent its spread.

Biogeographic Regions: nearctic (Introduced ); palearctic (Native ); oriental (Introduced ); ethiopian (Native ); neotropical (Introduced ); australian (Introduced ); oceanic islands (Introduced )

Other Geographic Terms: cosmopolitan

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Allen, A. 2006. "Ceratitis capitata" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ceratitis_capitata.html
editor
Nancy Shefferly, Animal Diversity Web
author
Amy Allen, Kalamazoo College
editor
Ann Fraser, Kalamazoo College
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Habitat

provided by Animal Diversity Web

In their native home range (sub-Saharan Africa), medflies are found in forests, open woodland in highland areas, and at the coast, shrublands, and dunes. Their dispersal across suboptimal habitats, such as areas where woody vegetation is dominant, is possible because of their ability to both exploit plants in dry habitats and their ability to migrate over moderate-to-substantial distances.

Ceratitis capitata hcan be found in agricultural areas where large quantities of fruit provide plenty of food. This species is widespread and may be found anywhere from sea level to mountainous areas (over 2,133 m in elevation). Its habitat use maybe be affected by other fruit fly species: when first introduced to Hawaii, medflies were found in the lowlands but since the subsequent introduction of the oriental fruit fly (Bactrocera dorsalis) in 1945, they are only found at higher elevations.

Range elevation: 0 to 2133 m.

Habitat Regions: temperate ; tropical ; terrestrial

Terrestrial Biomes: savanna or grassland ; forest ; rainforest ; scrub forest ; mountains

Other Habitat Features: agricultural

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Allen, A. 2006. "Ceratitis capitata" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ceratitis_capitata.html
editor
Nancy Shefferly, Animal Diversity Web
author
Amy Allen, Kalamazoo College
editor
Ann Fraser, Kalamazoo College
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Life Expectancy

provided by Animal Diversity Web

Sources differ on the maximum lifespan of adult medflies, it may be six months or a year, though they agree that cool conditions with abundant food and water are necessary for the flies to survive this long. Most live much shorter lives, and in most populations at least half are dead in less than 60 days. On a normal diet of sugar and protein in laboratory settings, females tend to outlive males by approximately 1.5 days.

Typical lifespan
Status: wild:
20 to 60 days.

Average lifespan
Status: wild:
35 days.

Typical lifespan
Status: captivity:
30 to 65 days.

Average lifespan
Status: captivity:
45 days.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Allen, A. 2006. "Ceratitis capitata" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ceratitis_capitata.html
editor
Nancy Shefferly, Animal Diversity Web
author
Amy Allen, Kalamazoo College
editor
Ann Fraser, Kalamazoo College
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Morphology

provided by Animal Diversity Web

The body of C. capitata is protected by an exoskeleton made of chitin. As in all insects, the body has three main segments: the head, thorax, and abdomen; as well as three pairs of legs. The oval-shaped abdomen is yellowish with two white bands. It is covered by black bristles. The thorax is whitish-yellow with patches of black. The eyes are reddish-purple, transforming to black within 24 hours of death. The single pair of wings is translucent and embellished with patterns of brown, yellow, black, and white.

Medflies exhibit sexual dimorphism in that females are larger than males and can be identified by a yellow wing pattern and pointed ovipositor (about 1.2 mm long) which is used to plant eggs within the host fruit. Males have more exaggerated features such as more brightly colored eyes, longer front legs, and a pair of supra-fronto-orbital bristles.

The white larvae, or maggots, are legless and may be up to 8 mm in length. Pupal length is about 4 mm and adults range from 3 to 5 mm, approximately two-thirds the size of a housefly. The wingspan of C. capitata was not available, but can be extrapolated from the wingspan of similar species. Oriental fruit flies, which have a body length of 6 to 8 mm, have a wingspan of 5.3 to 7.3 mm. Medflies, being slightly smaller in body size, probably have slightly shorter wingspans.

Range length: 3 to 5 mm.

Other Physical Features: ectothermic ; heterothermic ; bilateral symmetry

Sexual Dimorphism: female larger; sexes colored or patterned differently; male more colorful

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Allen, A. 2006. "Ceratitis capitata" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ceratitis_capitata.html
editor
Nancy Shefferly, Animal Diversity Web
author
Amy Allen, Kalamazoo College
editor
Ann Fraser, Kalamazoo College
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Associations

provided by Animal Diversity Web

These flies have no obvious structures or behaviors that are specifically related to defense against predators.

Medflies are attached by many parasitoid wasps. Some wasps (such as Diachasmimorpha tryoni and Diachasmimorpha longicaudata) are capable of hearing the larvae eating their way through the fruit. The wasp uses its ovipositor to inject an egg into the maggot. During the fly's pupation, the wasp larva will eat its host, killing the developing fly and emerging from the pupal case as an adult.

Many generalist predators of insects, such as ants, spiders, mantids, and assassin bugs will attack fruit flies. Birds, including chickens, will attack the larvae as they emerge from fruit, and some soil nematodes attack the larvae as the burrow and pupate.

Known Predators:

  • Diachasmimorpha longicaudata
  • chickens (Gallus gallus)
  • roundworms (Nematoda)
  • some ants (Family: Formicidae)
  • Diachasmimorpha tryoni
  • spiders (Araneae)
license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Allen, A. 2006. "Ceratitis capitata" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ceratitis_capitata.html
editor
Nancy Shefferly, Animal Diversity Web
author
Amy Allen, Kalamazoo College
editor
Ann Fraser, Kalamazoo College
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Reproduction

provided by Animal Diversity Web

Female medflies are fussy about their mates. Though the basis of a female's choice is not entirely understood by scientists, characteristic communications between the sexes are thought to play a role.

Male medflies claim their mating ground territories on individual leaves by depositing a pheromonal substance from the tip of the abdomen to the leaf. In addition, the male emits sounds by rapidly vibrating his wings while perched on the underside of his leaf.

Females watch this behavior from a distance of about 6 to 10 cm then begin to approach the male if he is deemed acceptable. As the female nears (within 3 to 5 mm) the male’s rapid wing flapping switches modes to what is called “fanning” in which he moves forward and backward, possibly to better direct the pheromones at the female. The male then proceeds with a side-to-side head motion. Slow motion analysis of the courtship shows female responses to the calling male. These inconspicuous responses, all occurring within 0.04 to 0.16 seconds, include touching the male with her head or front legs, jumping towards the male, short wing vibrations, and stretching just after mounting. A female may reject a male at any stage of the courtship sequence.

Males seek multiple mates (polygyny), whereas females tend to remate only if the initial mating was with a sterile male.

Mating System: polygynous

Adult medflies reach sexual maturity approximately five days after emerging from the pupal stage. Copulation occurs at any time of the day and both sexes are sexually active throughout the entire day. Medflies in tropical regions (warm temperatures year round) are capable of year-round breeding. A female medfly may lay up to 22 eggs per day, and possibly 800 eggs during her lifetime, though 300 is more typical. Because new eggs are constantly made throughout a female’s adult life, fecundity, or the number of eggs laid, is largely a function of the female’s lifespan.

Breeding interval: Female medflies usually mate once, then lay eggs over a period of several days or weeks before they die.

Breeding season: Medflies are capable of year-round breeding in tropical regions where the temperature remains warm. Otherwise, they breed during the warmer months of the year.

Range eggs per season: 200 to 800.

Average eggs per season: 300.

Range time to independence: 0 to 0 minutes.

Range age at sexual or reproductive maturity (female): 5 (low) days.

Range age at sexual or reproductive maturity (male): 5 (low) days.

Key Reproductive Features: semelparous ; seasonal breeding ; year-round breeding ; gonochoric/gonochoristic/dioecious (sexes separate); sexual ; fertilization (Internal ); oviparous ; sperm-storing

Medflies do not provide care for their offspring after eggs have been laid. However, females do invest some resources in each egg, providing young with the nutrients and energy needed to hatch out as larvae.

Parental Investment: pre-fertilization (Provisioning, Protecting: Female)

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Allen, A. 2006. "Ceratitis capitata" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ceratitis_capitata.html
editor
Nancy Shefferly, Animal Diversity Web
author
Amy Allen, Kalamazoo College
editor
Ann Fraser, Kalamazoo College
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Habitat ( Portuguese )

provided by EOL authors
Laranjeira (Citrus sinensis)
license
cc-by-nc
original
visit source
partner site
EOL authors

Mosca de la fruita ( Catalan; Valencian )

provided by wikipedia CA

La mosca de la fruita (Ceratitis capitata) és una espècie de dípter de la família dels tefrítids.

Filogènia i biogeografia

És originària de la costa occidental d'Àfrica, on viuen espècies molt properes, des d'on s'ha estès a altres zones temperades, subtropicals i tropicals dels dos hemisferis. Es considera una espècie cosmopolita, per la seva dispersió, deguda al transport de productes realitzats per l'home. És a la llista de les 100 espècies invasores més dolentes d'Europa.[1]

Tot i el seu origen, també l'anomenen mosca mediterrània de la fruita, ja que als països mediterranis és on la seva incidència econòmica s'ha fet més patent, afectant nombrosos cultius, sobretot cítrics i altres fruiters. A la península Ibèrica es distribueix per tota la zona sud i les regions mediterrànies. Arriba a condicions òptimes en les regions situades més a l'interior.

Descripció dels tipus

La mida dels adults és menor que la mosca domèstica (4-5 mm de longitutd) i amb colors vius (groc, blanc i negre). El tòrax és gris amb taques negres i llargs pèls. L'abdomen presenta franges grogues i grises. Les potes són groguenques. Tenen ales irisades, amb taques grises, grogues i negres. La femella posseeix un abdomen en forma cònica acabat en un fort oviscapte en el que s'insereixen abundants sedes sensorials grogues i negres.

Els ous són blancs, allargats i lleugerament corvats; de colors groguencs després de la posta. La seva mida mitjana és de 1mm x 0.2 mm.

Les larves són petites, blanquinoses i amb la part anterior situada a l'extrem agut del cos, la part posterior és més ampla. Després d'efectuar dues mudes, arriba al seu desenvolupament complet presentant un color blanc o groc amb taques color crema, ataronjades o vermelloses, segons el tipus d'aliments al seu interior. Mesura 9 mm x 2 mm. L'estadi larvari es prolonga durant 6-11 díes en condicions favorables.

Les pupes concluida l'última muda, el recobriment protector adopta forma de barril amb la superfície llisa i marró. Quan l'adult surt (entre 6-15 díes), la pupa es desclou transversalment, per un dels extrems.

Cicle biològic

La durada del cicle depèn de la temperatura. L'activitat es redueix durant l'hivern, que pot passar en estat de pupa. Si la temperatura puja per sobre de 14°C es reactiva. En zones de clima suau poden completar entre 6 a 8 generacions anuals. L'insecte surt del pupari que es troba enterrat a prop d'arbres i busca un lloc assolellat, 15 minuts després els teguments s'endureixen i adopta la coloració típica de l'espècie.

Després comença a volar, ja que les seves ales estan desenvolupades, els seus òrgans sexuals encara no. Realitza vols curts i es posa on trobi materies ensucrades, amb predilecció pels fruits, ja que són necessàries per a la seva maduresa sexual. La trobada entre el mascle i la femella es produeix quan el mascle exhala una secreció olorosa que és reconeguda per la femella, és un atractiu sexual que facilita la copulació. La femella fecundada inicia la posta en la pulpa de la fruita, atretes per l'olor i el color (prefereixen el groc i el taronja per això els fruits verds no són atacats).

Una sola còpula en la vida de la femella és suficient per a la fertilizació continúa dels ous. Si les temperatures són favorables els ous es desclouen en aproximadament 2 díes. Les larves s'alimenten de la pulpa de la fruita on produeixen galeries. Una vegada surten del fruit, viuen al sól on realitzen la seva fase de pupa sota les fulles seques.

Referències

 src= A Wikimedia Commons hi ha contingut multimèdia relatiu a: Mosca de la fruita Modifica l'enllaç a Wikidata
  1. «100 of The Worst» (en anglès). Daisie, 2012.
license
cc-by-sa-3.0
copyright
Autors i editors de Wikipedia
original
visit source
partner site
wikipedia CA

Mosca de la fruita: Brief Summary ( Catalan; Valencian )

provided by wikipedia CA

La mosca de la fruita (Ceratitis capitata) és una espècie de dípter de la família dels tefrítids.

license
cc-by-sa-3.0
copyright
Autors i editors de Wikipedia
original
visit source
partner site
wikipedia CA

Mittelmeerfruchtfliege ( German )

provided by wikipedia DE

Die Mittelmeerfruchtfliege (Ceratitis capitata) zählt zur rund 4.500 Arten umfassenden Familie der Bohrfliegen (Tephritidae), ist also mit den ebenfalls zuweilen als „Fruchtfliegen“ bezeichneten Taufliegen (Drosophilidae) nicht näher verwandt. Sie ist wie die Mehrzahl der Bohrfliegen durch auffällig gefleckte Flügel und bei den Weibchen zusätzlich durch eine Legeröhre gekennzeichnet. Als wirtschaftlich weltweit bedeutendste Art der Bohrfliegen ist die Mittelmeerfruchtfliege ein vor allem in den Tropen und Subtropen gefürchteter Schädling im Obst- und Gemüseanbau, da sich ihre polyphagen Larven im Fruchtfleisch bzw. Gewebe zahlreicher Pflanzenarten entwickeln können. Auch nach Mitteleuropa wird sie regelmäßig eingeschleppt, ohne dort jedoch dauerhafte Populationen aufbauen zu können.

Merkmale

Die Imago ist 3,5 bis 5 mm lang. Das Abdomen ist gelblich mit brauner Tönung. Die Facettenaugen sind rötlich-violett mit grünlichem Schimmer. Männchen tragen nahe dem inneren Augenrand ein verlängertes, spatelig verbreitertes Borstenpaar. Der stark buckelige Thorax ist weißlich bis gelblich mit charakteristischer schwarzer Zeichnung. Die Legeröhre (Ovipositor) der Weibchen ist gestreckt 1,2 mm lang. Die hyalinen Flügel sind schwarz und bräunlich gezeichnet, durch die Flügelmitte zieht sich ein breites braungelbes Band.

Die etwa einen Millimeter langen Eier sind schlank, gekrümmt, glatt und durchscheinend weiß. Der Bereich der Mikropyle ist höckrig. Die Larven sind weiß und im letzten ihrer drei Entwicklungsstadien etwa 7 bis 9 mm lang. Ausgewachsene Larven können, wenn sie aus Früchten entnommen werden, mehrfach etwa 25 mm weite „Sprünge“ vollführen. Die Puppe ist 4 bis 4,3 mm lang, zylindrisch und dunkelrotbraun.

Lebensweise

Die Entwicklung der Mittelmeerfruchtfliege vom Ei bis zur Imago ist temperaturabhängig und dauert ungefähr bei 32 °C 16 Tage, bei 24 °C 30 Tage und bei 18 °C 100 Tage. Im Sommer Floridas sind etwa 21 bis 30 Tage typisch. In Hawaii, das ganzjährig günstige Bedingungen bietet, können bis zu 16 Generationen pro Jahr auftreten.[1]

Das Weibchen legt ein bis zehn Eier in eine ein Millimeter tiefe Höhlung und kann bis zu 22 Eier am Tag legen. Während seines Lebens sind es bis zu 800 Eier, durchschnittlich etwa 300. Diese werden meist unter der Haut einer reifenden Frucht deponiert, oft unter Ausnutzung bereits vorhandener Risse. Heranreifende Früchte werden gegenüber bereits reifen bevorzugt. Die schlüpfenden Larven bilden Tunnel und bleiben bis fast zuletzt nahe beieinander. Die Entwicklungsstadien Ei, Larve und Puppe stagnieren, wenn die Temperatur auf 10 °C sinkt. In warmen Bedingungen schlüpfen die Larven nach 1,5 bis 3 Tagen. Sie durchlaufen drei Entwicklungsphasen. Bei 25° bis 26,1 °C dauert die gesamte Larvenphase nur 6 bis 10 Tage, dies ist aber auch vom Futter abhängig. Typisch sind 10 bis 15 Tage (unreifer Pfirsich) bis 14 bis 26 Tage (reife Zitrone). Die Verpuppung erfolgt meist im Boden. Bei 24,4 °C bis 26,1 °C dauert die Puppenruhe 6 bis 13 Tage.

Der Schlupf der Imagines erfolgt bei warmem Wetter bevorzugt morgens. Die Tiere können nur über kurze Distanzen fliegen, können durch Wind jedoch auch über mehrere Kilometer verfrachtet werden. Frisch geschlüpft sind sie noch nicht fortpflanzungsfähig. Männchen pflanzen sich meist etwa fünf Tage nach dem Schlupf fort, die Weibchen können meist sechs bis acht Tage nach dem Schlupf befruchtet werden. Zwei Monate nach dem Schlupf sind in der Regel über 50 % der geschlüpften Tiere tot. Ist keine Nahrung verfügbar, sterben sie bereits nach vier Tagen. Manche Adulten können bei guten Ernährungsbedingungen und kühler Umgebung sechs Monate oder länger überleben.

Nahrungspflanzen

Das Nahrungsspektrum der Mittelmeerfruchtfliege ist im Gegensatz zu vielen anderen Vertretern der Bohrfliegen sehr breit. Über 260 zumindest gelegentlich befallene Pflanzenarten sind bekannt. Bevorzugt werden dünnhäutige, im Reifezustand saftig-sukkulente Früchte. Das Fruchtfleisch wird durch die Tätigkeit der Larven zerstört und breiartig verflüssigt. Da die Larventunnel als Eingangspforten für Bakterien und Pilze dienen, ist für die Zerstörung der Früchte oft ein sekundärer mikrobieller Befall mitverantwortlich.

Befallen werden jedoch auch Gemüse, Blüten und Nussfrüchte. Die Nahrungspflanzen variieren abhängig von der Region; manche Arten werden nur unter Laborbedingungen, nicht aber im Freiland angenommen. Zu den besonders bevorzugten Arten zählen eine Reihe von Vertretern der Zitrusgewächse, aber auch Kaffee, Kaki, Feige, Mango und Arten der Gattung Prunus wie etwa Pfirsich. Unter den gelegentlich befallenen Arten sind ebenfalls wichtige Nutzpflanzen, wie Paprika, Papaya, Walnuss, Baumwolle und Avocado. Selten betroffene Arten sind z. B. Litschi, Banane oder Dattelpalme.

Herkunft, Verbreitung und Befallsgebiete

Das Herkunftsgebiet der Mittelmeerfruchtfliege liegt nicht im Mittelmeerraum, sondern dem subsaharischen Afrika. Die genaue Region ist unklar, möglicherweise stammt die Art aus Kenia.[2] Durch den globalen Obsthandel tritt sie jedoch inzwischen weltweit in zahlreichen Regionen auch außerhalb Afrikas mehr oder weniger regelmäßig auf, neben dem Mittelmeerraum etwa in Australien und den Staaten Süd- und Mittelamerikas. Da sie trotz ihrer tropischen Herkunft eine vergleichsweise hohe Anpassungsfähigkeit an tiefere Temperaturen besitzt, dringt sie nicht nur bis in südliche Bundesstaaten der USA vor, sondern kann sich auch in Mitteleuropa, wo sie regelmäßig eingeschleppt wird, unter günstigen Bedingungen vermehren, übersteht allerdings dort den Winter nicht. Da sie im Obstbau schwere Schäden verursachen kann, wird sie vielerorts vehement bekämpft, was beispielsweise in Neuseeland, wo sie 1996 in Auckland auftauchte, zur erfolgreichen Ausrottung führte.

Mittel- und Westeuropa

Spätestens 1937 trat die Mittelmeerfruchtfliege im Raum Frankfurt am Main auf. 1939 und erneut 1952 vernichtete sie dort die Pfirsichernte. Auch in Österreich, der Schweiz und Frankreich tritt sie regelmäßig in Erscheinung. In manchen Obstbaugebieten der Räume Basel, Paris und Genf wurde wegen dieser Art der Pfirsichanbau aufgegeben.[3]

USA

Die in den USA oft auch kurz als „Medfly“ bezeichnete Fliege wurde um 1907 aus Australien nach Hawaii eingeschleppt. 1929 ist ihr erstes Auftreten auf USA-Festland dokumentiert. Betroffene Bundesstaaten sind seitdem Texas, Kalifornien und Florida. Durch massive Bekämpfung konnte offenbar bislang eine dauerhafte Besiedlung vermieden werden, aber insbesondere in Kalifornien und Florida kommt es immer wieder zu Ausbrüchen.

„Medfly-Krise“ in Kalifornien

Anfang der 1980er-Jahre lösten Bekämpfungsmaßnahmen gegen die Mittelmeerfruchtfliege in Kalifornien die sogenannte „California Medfly-Crisis“ aus, die zeitweise Züge einer Massenhysterie annahm. Im Juni 1980 wurden im Santa Clara County Fliegen gefunden. Da bei dauerhafter Etablierung des Insekts hohe ökonomische Schäden befürchtet wurden, kam es zunächst zu lokalen Bekämpfungsmaßnahmen. Da diese bis Ende 1980 erfolglos blieben, wurde mit Billigung des Gouverneurs eine 6-wöchige, großflächige Sprühaktion aus der Luft mit dem Insektizid Malathion geplant. Darauf kam es zu massivem Widerstand lokaler Umweltschutzgruppen. Malathion, eines der in den USA in Haus und Garten am häufigsten angewandten Pestizide, besitzt nur einen geringen Grad akuter Toxizität für den Menschen. Allerdings traten auch Fachleute auf, die aus manchen Studien eine menschliche Gefährdung herleiten wollten. Andere argumentierten mit der Bienengefährlichkeit des Mittels und der Gefährdung von Fischen und hielten – wenn überhaupt – eine Bekämpfung mit biologischen Mitteln für ausreichend. In der Öffentlichkeit entstanden zeitweilig Zustände, die fast einer Massenpanik gleichkamen. Ein Komitee neutraler Fachleute kam jedoch zum Schluss, dass weder Kurz- noch Langzeitgefährdung der Bevölkerung bestehe. Durch massive Aufklärungsmaßnahmen, Einrichtung einer Hotline für die Bevölkerung etc. flaute die alarmierende Berichterstattung in den Medien allmählich ab. Das Amerikanische Rote Kreuz richtete Evakuierungsunterkünfte ein, die dann mangels Interesse im Lauf der durchgeführten großflächigen Sprühmaßnahmen wieder abgebaut wurden. Obwohl diese auf 6 weitere Counties ausgedehnt wurden (Gesamtfläche 1.300 Quadratmeilen, entspr. etwa 3.370 km²), war inzwischen allgemeine Beruhigung eingetreten. Die Bekämpfung selbst war erst im September 1982 abgeschlossen.[4]

2007 und 2008 traten in Kalifornien erneut Befälle mit Mittelmeerfruchtfliegen auf, auf die mit massiven Maßnahmen (Versprühen von Pestiziden am Grund sowie Freisetzung steriler Männchen) reagiert wurde.[5]

Alternative Bekämpfungsmethoden

Neben dem Einsatz von Insektiziden beruht eine alternative Bekämpfungsmethode auf dem gezielten Aussetzen von Männchen, die durch Bestrahlung mit Gammastrahlen zuvor unfruchtbar gemacht wurden, der sogenannten Sterile-Insekten-Technik (SIT). Die Selektion männlicher Eier erfolgt bei der Mittelmeerfruchtfliege durch eine Behandlung mit warmem Wasser, die weibliche Embryonen, im Gegensatz zu den männlichen, abtötet. Die Population der Nachfolgegeneration wird auf diese Weise verringert, da sich Weibchen nur einmal paaren.

2009 wurde eine biotechnologische Bekämpfungsmethode beschrieben, die auf Einschleusung eines regulierbaren Letalitätsgens in männliche Individuen basiert. Es wird erst nach deren Freisetzung aktiviert und bewirkt ein frühzeitiges Absterben der Nachkommen. Feldstudien stehen bislang noch aus.[6]

Synonyme

  • Ceratitis citriperda MacLeay
  • Ceratitis hispanica De Brême
  • Paradalaspis asparagi Bezzi
  • Tephritis capitata Wiedemann

Quellen

Literatur

  • M. C. Thomas, J. B. Heppner, R. E. Woodruff, H. V. Weems, G. F. Steck, T. R. Fasulo: Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann) (Insecta: Diptera: Tephritidae) EENY-214 (IN371) (orig. publ. als DPI Entomology Circulars 4, 230 and 273), Serie Featured Creatures, Entomology and Nematology Dept., Florida Cooperative Extension Service, Inst. of Food and Agricultural Sciences, Univ. of Florida, 2001. (online)

Einzelnachweise

  1. Urania-Tierreich, Bd. 3, Insekten. Urania-Verl. Leipzig u. a., 5. Aufl. 1989, ISBN 3-332-00255-4
  2. Ceratitis capitata Wied. – Mittelmeerfruchtfliege, Mediterranean Fruit Fly (Memento vom 5. Juli 2008 im Internet Archive)
  3. Bernhard Grzimek (Hrsg.): Grzimeks Tierleben, Bd. 2: Insekten. Kindler Verlag, Zürich, 1968, Lizenzausgabe Dt. Taschenbuchverlag, München, 1993, S. 412–413
  4. E. Kahn, R. J. Jackson, D. O. Lyman, J. W. Stratton: A Crisis of Community Anxiety and Mistrust: The Medfly Eradication Project in Santa Clara County, California, 1981-82. Am. J. Public Health 1990; 80:1301-1304, PMC 1404895 (freier Volltext)
  5. Übersicht zu aktuellen Bekämpfungsprogrammen, USDA (Memento des Originals vom 20. Mai 2009 im Internet Archive)  src= Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.aphis.usda.gov
  6. Marc F. Schetelig, Carlos Caceres, Antigone Zacharopoulou, Gerald Franz, Ernst A. Wimmer: Conditional embryonic lethality to improve the sterile insect technique in Ceratitis capitata (Diptera: Tephritidae). BMC Biology 2009, 7:4 (PDF; 1,8 MB)

Weblinks

 src=
– Album mit Bildern, Videos und Audiodateien
 title=
license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Mittelmeerfruchtfliege: Brief Summary ( German )

provided by wikipedia DE

Die Mittelmeerfruchtfliege (Ceratitis capitata) zählt zur rund 4.500 Arten umfassenden Familie der Bohrfliegen (Tephritidae), ist also mit den ebenfalls zuweilen als „Fruchtfliegen“ bezeichneten Taufliegen (Drosophilidae) nicht näher verwandt. Sie ist wie die Mehrzahl der Bohrfliegen durch auffällig gefleckte Flügel und bei den Weibchen zusätzlich durch eine Legeröhre gekennzeichnet. Als wirtschaftlich weltweit bedeutendste Art der Bohrfliegen ist die Mittelmeerfruchtfliege ein vor allem in den Tropen und Subtropen gefürchteter Schädling im Obst- und Gemüseanbau, da sich ihre polyphagen Larven im Fruchtfleisch bzw. Gewebe zahlreicher Pflanzenarten entwickeln können. Auch nach Mitteleuropa wird sie regelmäßig eingeschleppt, ohne dort jedoch dauerhafte Populationen aufbauen zu können.

license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Ceratitis capitata

provided by wikipedia EN

Ceratitis capitata, commonly known as the Mediterranean fruit fly or medfly, is a yellow-and-brown fly native to sub-Saharan Africa. It has no near relatives in the Western Hemisphere and is considered to be one of the most destructive fruit pests in the world.[1] There have been occasional medfly infestations in California, Florida, and Texas that require extensive eradication efforts to prevent the fly from establishing itself in the United States.[1]

C. capitata is the most economically important fruit fly species because of both its ability to survive cooler climates more successfully than most other fly species and its ability to inhabit more than 200 tropical fruits and vegetables to which it causes severe destruction and degradation.[1] The practices that are used to eradicate the medfly after its introduction into a new environment can be extremely difficult and expensive, but infestation of C. capitata lowers crop yields and induces costly sorting processes for fresh fruits and vegetables.[1]

Physical description

Egg

C. capitata eggs are characterized by their curved shape, shiny white color, and smooth features.[1] Each egg is approximately 1 millimetre (5128 in) in length.[1] As seen in other fruit flies, the egg possess a micropylar region with a clear tubular shape.[1]

Larvae

Larvae of C. capitata have been described as having a common fruit fly larval shape that is cylindrical with a narrow anterior end and flattened caudal tail.[1] By the end of the third and final instar of the medfly, the larvae measure between 7 and 9 millimetres (35128 and 45128 in) and about 8 fusiform areas.[1]

Larva of the medfly

Adult

The adult flies typically measure 3 to 5 millimetres (15128 to 25128 in) in length. There are numerous visually defining characteristics of the C. capitata’s bodily features. The thorax is a creamy white to yellow with a characteristic pattern of black blotches, and the abdomen is tinted brown with fine black bristles located on the dorsal surface and two light bands on the basal half. The medfly's wings contain a band across the middle of the wing with dark streaks and spots in the middle of the wing cells.

In a study done by Siomava et al., researchers utilized geometric morphometrics to analyze wing shape in three different fly species including C. capitata. Through their findings, the researchers showed that the medfly exhibits extensive sexual shape dimorphism (SShD) between the proximal and distal part of the wing. This difference can be used to distinguish between the two sexes since male wings tend to be wider and shorter in comparison to females. This anatomical difference is important because this allows males to displace more air and create a more audible “buzzing” effect during mate attraction.[1][2]

Distribution

The Geographic Distribution Map of C. capitata (Updated December 2013).

The above map provides information on the distribution of the Mediterranean fruit fly, C. capitata, throughout the world. The information is mainly based on available Mediterranean fruit fly national surveillance reports. Therefore, the map displays assessments of the presence of this pest at the national level and in some cases at sub-national levels. According to this map, C. capitata is present throughout Africa, South and Central America, the Middle East, and Southern Europe. It has been confirmed to be absent in much of North America, the Indian subcontinent, some parts of South America, and most of Australia. Climate change might have role in modifying the distribution and abundance of C. capitata.[3]

The four stages of the C. capitata life cycle are the egg, larvae, pupae and adult stages. Female medflies oviposit in groups of roughly 10-14 eggs and deposit them just under the skin surface of their host fruit.[1] Once the eggs are deposited below the skin, they hatch in only a few days, emerging as maggots, or larvae. C. capitata flies are known to disperse up to distances of 12 miles in search of host fruit. In the instances where host fruit is plentiful in their current locations, they will not disperse beyond 300 to 700 feet.[2]

Temperature effects

Medflies can complete their life cycles in 21 days in optimum conditions. In cooler temperatures, the life cycle of the medfly can take up to 100 days to complete. In temperatures that are below 50 °F (10 °C), development of the fly ceases. Oviposition in females ceases to occur in temperatures below 60 °F (16 °C).[1]

Lifespan

The lifespan of the C. capitata is quite short as half of most populations die in under 60 days. However, cool conditions and proper sustenance can enable some flies to live 6 months or up to a year. In lab conditions, under controlled diets of sugar and protein, the life expectancy of females is usually longer than that of males by 1.5 days. On average, the lifespans of flies in captivity are 10 days longer than those of wild flies.[4][5]

The lifespans of certain species are also affected by periods of food deprivation, which is a key driver of invasion success, adaptation, and biodiversity. Starvation resistance is a plastic trait that varies due to the relation between environmental and genetic factors. Recent studies into the starvation resistance (SR) of C. capitata has found that SR decreases with increasing age and that age-specific patterns are shaped in relation to adult and larval diet. Furthermore, females exhibited higher SR than males, and the greatest influence on SR in C. capitata was due to age and adult diet followed by gender and larval diet.[6]

Food resources

Among fruit fly species, C. capitata has the largest variety of host-fruits, including over 200 different types of fruits and vegetables. These fruits include but are not limited to akee, star apple, oranges, grapefruit, guava, mango, plum, and pears.[7] C. capitata in the adult and larval stage feed in different ways.[4][7]

Larva

Because nutrition is a crucial determinant of adult size and development, larva prefer to eat fleshy host fruit. Higher concentrations of glucose and sucrose boost development and the percentage of emerging larva in comparison to high starch and maltose diets.[4][7][8]

By manipulating larval diets with relation to brewer's yeast and sucrose, researchers were able to show that varying the levels of yeast and sucrose in the diet changes the proportion of proteins to carbohydrates which affects the ability of pupating larvae to accumulate lipid reserves. Diets with high protein to carbohydrate ratios produced larvae with high protein and lipid contents. Conversely, diets with a low protein to carbohydrate ratio led to pupating larvae having relatively reduced loads of lipids.[9] Parental condition may affect larval responses to the immediate dietary environment through a process known as maternal effects.[10]

Pupal

Research into the correlation between citrus variety, fruit part and stage of C. capitata has found strong effects on larval performance, smaller effects on pupae, and no effects on eggs. The highest survival rate was shown to be on bitter oranges; however, the shortest developmental time and heaviest pupae were obtained from orange cultivars. In short, pulp chemical properties such as acidity and soluble solid contents had little effect on larval and pupal survival but larger effects on pupal weight.[11]

Adult

Adults tend to gain their carbohydrate intake from ripe fruit and protein from decomposing fruit or leftover bird feces. While larva prefer the middle of the fruit, adults prefer the fruit portion that contains more nutritional value in comparison to the flesh. Their diet preferences have been proven by studies in which medflies placed at the top of oranges and papayas consistently moved lower to the nutrient dense parts whereas flies placed near the bottom remained in their starting location. Adult flies typically feed in the mid-morning/late afternoon.[4][7]

With respect to reproductive success of male C. capitata, males that are fed a diet consisting of no protein copulated at a significantly lower rate than males who were fed protein. In short, male diets are a significant factor in the mating success of male C. capitata as dictated by the receptivity of females to further copulations.[9]

It was shown, that adults of C. capitata host diazotrophic bacteria from the Enterobacteriaceae family in their gut. These symbionts actively fix nitrogen by the enzyme nitrogenase which can alleviate nitrogen limitation and thus can be beneficial for the host.[12]

Mating behavior

General overview

Field observations conducted in various localities within the Hawaiian Islands, specifically in Kula, Maui and in Kona, Hawaii, showed researchers a clear distinction in the mating behavior of C. capitata. The mating ritual in this species of fly can be separated into two basic phases: (1) lek behavior and (2) courtship.

Males

In lek behavior, males begin by acquiring territory and jockeying with each other for optimal position. Leks are always located in positions that optimize the amount of sunlight penetrating the leaves.[13] Mating in the C. capitata fly typically begins with males stationed at the bottom of the surface of leaves during the late morning or early afternoon. Once males are stationed at these locations, they begin the mating process by forming leks and releasing sex pheromones to attract virgin females. If successful, mating will occur during this time period. Another important location for copulation is on the fruit itself during the late morning or early afternoon. Males position themselves here in an attempt to copulate with already-mated females through seduction or force.[14] A study conducted by Churchill-Stanland et al., showed that a male's size can dictate their mating success rate. Researchers found that flies weighing approximately 8–9 mg had optimum mating success while smaller flies (i.e. <6 mg) had significantly less mating success.[1] Furthermore, when males were equal or larger in size, mating frequency was equal and events such as eclosion, flying, and mating speed were positively correlated with pupal size.[15]

During the courtship phase, a series of signals are exchanged between the male and the female. As the female approaches, the male tucks his abdomen under his body with his abdominal pouches still inflated and wings still vibrating. Once the female is within 3–5 millimetres (1512825128 in) of the male, the male will begin a series of head movements. Within 1–2 seconds of head movement initiation, the male begins rhythmically wing its fannings and moves closer to the female. Once close enough, the male then leaps onto the females back and begins copulation.[13]

Male C. capitata

Females

It has been shown that during mating, females experience a switch in olfactory-mediated behaviors. Specifically, virgin females prefer the pheromones of sexually developed males over the host fruit odor. Females exhibit this preference until mating occurs, following which they prefer the host fruit odor.[16] This finding has been evidenced by a specific protein, CcapObp22, that shows approximately 37% identity with the pheromone binding protein of Drosophila melanogaster. In a recent study, this protein was shown to bind male pheromone components, specifically farnesene, a highly strong hydrophobic terpene.[17]

Genetics

Sex determination in C. capitata is by the typical XY system.[18] Unusually for a dipteran and for a frugivore, medflies do not have an opsin gene for blue light perception as shown from the whole-genome sequencing project completed in September 2016.[19] In a study done by Spanos et al. in 2001, researchers were able to sequence the entire mitochondrial genome of the fly. They found that the genome was 15,980 base pairs long with 22 tRNA genes and 13 genes encoding mitochondrial proteins. Using this information, researchers were able to use this genome sequence as a diagnostic tool for population analysis and a method to determine the source of recent introductions.[20]

Immunity and disease transmission

In a 1987 study completed by Postlethwait et al., researchers assessed the immune response of the medfly using bacterial inoculation. After inoculating the medfly with Enerobacter cloacae, the researcher extracted the haemolymph from the males and found that it contained potent antibacterial factors compared to the haemolymph of controls. Through further testing, they were able to show that these potent factors were generated within 3 hours of inoculation and lasted for approximately 8 days. This finding indicated that medflies do have an adaptive immune response that is similar to the Drosophila melanogaster.[21]

Since it has been established that C. capitata is a cosmopolitan pest that affects hundreds of commercial and wild fruit species, considerable research has been done to assess the medfly's ability to transmit diseases. A 2005 study conducted by Sela et al. utilized green fluorescent protein (GFP)-tagged E. coli placed in fruit fly feeding solution to show that flies inoculated with GFP-tagged E. Coli was able to harbor the bacteria for up to 7 days following contamination. This finding showed that the medfly has the potential to be a vector of human pathogens to fruits.[22]

Aggression

Studies have shown that wild C. capitata flies were found to partake in more head-butting behavior, direct opponent contact, and less likely to cede an occupied leaf to an invader. Furthermore, it was found that sounds that are produced during body vibration constitutes threat behavior. Aggressive sounds are substantially higher in pitch (roughly around 1–3 kHz) while sounds produced during non-aggressive moments such as courtship times tended to be around 0.16-0.35 kHz.[23] Aggressive behaviors can be observed during the courtship ritual. If the approaching fly is discerned to be an intruder male fly, the resident male fly terminates his calling position and lunges towards the intruder, physically pushing the intruder with his head. This interaction lasts until either party loses position or eventually leaves the position. Males can also partake in passive defensive actions which consists of a “face-off” with the intruder male rather than a physical “head-butt”. Males in the “face-off” position can last up to 5 minutes until one male eventually turns and leaves the territory.[13]

Invasions and eradication

In the United States, C. capitata has invaded four states (Hawaii, California, Texas, and Florida) but has been eradicated from all but Hawaii. However, reintroduced populations of the medfly have been spotted in California as recently as 2009, requiring additional eradication and quarantine efforts.[24] It has also been eradicated from New Zealand and Chile.

Eradication efforts in Mexico and Guatemala

Medflies were first detected in the region in Costa Rica in 1955. From then on, the medfly spread northward, reaching Guatemala in 1976 and Mexico in 1977. In order to begin eradication efforts, the Mass-rearing and Sterilization Laboratory was producing 500 million sterile flies weekly by the end of 1979. By releasing these sterile flies into the wild, scientists were able to not only prevent the northward spread of the fly, but officially declare it as eradicated from all of Mexico and large areas in Northern Guatemala in September 1982.[25]

Eradication efforts in Western Australia

Utilizing the Sterile Insect Technique, the medfly was eradicated in December 1984 from Carnarvon, Western Australia. In the 1980s, the Western Australia Department of Agriculture conducted a feasibility study into using the Sterile Insect Technique to eradicate the medfly population. Phase 1 of this study utilized 70 traps to establish the seasonal abundance of wild fly prior to releases. In Phase 2 of the study, the Department of Agriculture released 7.5 million sterile flies per week; however, this was insufficient in limiting the wild fly population. During phases 3 and 4, the number of released sterile flies increased to 12 million a week and was combined with chemical controls. After wild flies were no longer detected, phase 5 was initiated, withdrawing chemical controls from further distribution. Eradication was declared when neither wild flies nor larvae were found during the period of October 1984 to January 1985. This period corresponded to 3 fly generations; a threshold of eradication utilized by Hendrichs et al. (1982) in the eradication of the medfly in Mexico.[26]

Outbreaks in California

Much research has been dedicated to means of controlling the medfly.[27] In particular, use of the sterile insect technique has allowed the species to be eradicated from several areas.

A typical trap used to capture C. capitata.

In 1981, California Governor Jerry Brown, who had established a reputation as a strong environmentalist, was confronted with a serious medfly infestation in the San Francisco Bay Area. He was advised by the state's agricultural industry and the US Department of Agriculture's Animal and Plant Health Inspection service (APHIS) to authorize airborne spraying of the region. Initially, in accordance with his environmental protection stance, he chose to authorize ground-level spraying only. Unfortunately, the infestation spread as the medfly reproductive cycle outpaced the spraying. After more than a month, millions of dollars of crops had been destroyed and billions of dollars more were threatened. Governor Brown then authorized a massive response to the infestation. Fleets of helicopters sprayed malathion at night, and the California National Guard set up highway checkpoints and collected many tons of local fruit. In the final stage of the campaign, entomologists released millions of sterile male medflies in an attempt to disrupt the insects' reproductive cycle.

Ultimately, the infestation was eradicated, but both the governor's delay and the scale of the action has remained controversial ever since. Some people claimed that malathion was toxic to humans, animals, as well as insects. In response to such concerns, Brown's chief of staff, B. T. Collins, staged a news conference during which he publicly drank a small glass of malathion. Many people complained that, while the malathion may not have been very toxic to humans, the aerosol spray containing it was corrosive to car paint.[28]

During the week of September 9, 2007, adult flies and their larvae were found in Dixon, California. The California Department of Food and Agriculture and cooperating county and federal agricultural officials started eradication and quarantine efforts in the area. Eradication was declared on August 8, 2008, when no "wild" (i.e. non-sterile) medflies were detected for three generations.

On November 14, 2008, four adult flies were found in El Cajon, California. The San Diego County Agricultural Commission implemented a treatment plan, including distributing millions of sterile male flies, local produce quarantines, and ground spraying with organic pesticides.[29]

References

  1. ^ a b c d e f g h i j k l m Thomas MC, Heppner JB, Woodruff RE, Weems HV, Steck GJ, Fasulo TR (July 2001). "Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann) (Insecta: Diptera: Tephritidae)" (PDF). DPI Entomology Circulars. Florida Department Agr Cons Serv.
  2. ^ a b "Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann)(Insecta: Diptera: Tephritidae)" (PDF).
  3. ^ Gilioli, Gianni; Sperandio, Giorgio; Colturato, Michele; Pasquali, Sara; Gervasio, Paola; Wilstermann, Anne; Dominic, Anto Raja; Schrader, Gritta (2021-10-05). "Non-linear physiological responses to climate change: the case of Ceratitis capitata distribution and abundance in Europe". Biological Invasions. 24: 261–279. doi:10.1007/s10530-021-02639-9. ISSN 1573-1464. S2CID 244216891.
  4. ^ a b c d Carey JR, Liedo P, Harshman L, Zhang Y, Müller HG, Partridge L, Wang JL (December 2002). "Life history response of Mediterranean fruit flies to dietary restriction". Aging Cell. 1 (2): 140–8. doi:10.1046/j.1474-9728.2002.00019.x. PMID 12882344. S2CID 36822766.
  5. ^ "Ceratitis capitata". www.extento.hawaii.edu. Retrieved 2019-10-02.
  6. ^ Gerofotis CD, Kouloussis NA, Koukougiannidou C, Papadopoulos NT, Damos P, Koveos DS, Carey JR (July 2019). "Age, sex, adult and larval diet shape starvation resistance in the Mediterranean fruit fly: an ecological and gerontological perspective". Scientific Reports. 9 (1): 10704. Bibcode:2019NatSR...910704G. doi:10.1038/s41598-019-47010-0. PMC 6656776. PMID 31341198.
  7. ^ a b c d "CDFA - Plant Health - PDEP- Mediterranean fruit fly Pest Profile". www.cdfa.ca.gov. Retrieved 2019-10-02.
  8. ^ Leftwich PT, Nash WJ, Friend LA, Chapman T (February 2017). "Adaptation to divergent larval diets in the medfly, Ceratitis capitata". Evolution; International Journal of Organic Evolution. 71 (2): 289–303. doi:10.1111/evo.13113. PMC 5324619. PMID 27883361.
  9. ^ a b Blay S, Yuval B (July 1997). "Nutritional correlates of reproductive success of male Mediterranean fruit flies (Diptera: Tephritidae)". Animal Behaviour. 54 (1): 59–66. doi:10.1006/anbe.1996.0445. PMID 9268435. S2CID 41943967.
  10. ^ Leftwich PT, Nash WJ, Friend LA, Chapman T (February 2019). "Contribution of maternal effects to dietary selection in Mediterranean fruit flies". Evolution; International Journal of Organic Evolution. 73 (2): 278–292. doi:10.1111/evo.13664. PMC 6492002. PMID 30592536.
  11. ^ Papachristos DP, Papadopoulos NT, Nanos GD (June 2008). "Survival and development of immature stages of the Mediterranean fruit fly (Diptera: Tephritidae) in citrus fruit". Journal of Economic Entomology. 101 (3): 866–72. doi:10.1603/0022-0493(2008)101[866:sadois]2.0.co;2. PMID 18613588. S2CID 25240073.
  12. ^ Behar, A.; Yuval, B.; Jurkevitch, E. (August 2005). "Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata". Molecular Ecology. 14 (9): 2637–2643. doi:10.1111/j.1365-294X.2005.02615.x. ISSN 0962-1083. PMID 16029466. S2CID 16454141.
  13. ^ a b c Arita L (1989). "Sexual Selection and Lek Behavior in the Mediterranean Fruit Fly". Pacific Science. 43 – via University of Hawaii.
  14. ^ Prokopy RJ, Hendrichs J (1979-09-15). "Mating Behavior of Ceratitis capitata on a Field-Caged Host Tree". Annals of the Entomological Society of America. 72 (5): 642–648. doi:10.1093/aesa/72.5.642.
  15. ^ Churchill-Stanland C, Stanland R, Wong TT, Tanaka N, McInnis DO, Dowell RV (1986-06-01). "Size as a Factor in the Mating Propensity of Mediterranean Fruit Flies, Ceratitis capitata (Diptera: Tephritidae), in the Laboratory". Journal of Economic Entomology. 79 (3): 614–619. doi:10.1093/jee/79.3.614.
  16. ^ Jang EB (1995-08-01). "Effects of mating and accessory gland injections on olfactory-mediated behavior in the female mediterranean fruit fly, Ceratitis capitata". Journal of Insect Physiology. 41 (8): 705–710. doi:10.1016/0022-1910(95)00015-M. ISSN 0022-1910.
  17. ^ Falchetto M, Ciossani G, Scolari F, Di Cosimo A, Nenci S, Field LM, et al. (June 2019). "Structural and biochemical evaluation of Ceratitis capitata odorant-binding protein 22 affinity for odorants involved in intersex communication". Insect Molecular Biology. 28 (3): 431–443. doi:10.1111/imb.12559. PMID 30548711. S2CID 56483660.
  18. ^ Meccariello A, Salvemini M, Primo P, Hall B, Koskinioti P, Dalíková M, et al. (September 2019). "Maleness-on-the-Y (MoY) orchestrates male sex determination in major agricultural fruit fly pests" (PDF). Science. 365 (6460): 1457–1460. Bibcode:2019Sci...365.1457M. doi:10.1126/science.aax1318. PMID 31467189. S2CID 201675673.
  19. ^ Papanicolaou A, Schetelig MF, Arensburger P, Atkinson PW, Benoit JB, Bourtzis K, et al. (September 2016). "The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species". Genome Biology. 17 (1): 192. doi:10.1186/s13059-016-1049-2. PMC 5034548. PMID 27659211.
  20. ^ Spanos L, Koutroumbas G, Kotsyfakis M, Louis C (2000). "The mitochondrial genome of the Mediterranean fruit fly, Ceratitis capitata". Insect Molecular Biology. 9 (2): 139–144. doi:10.1046/j.1365-2583.2000.00165.x. PMID 10762421. S2CID 42596774.
  21. ^ Postlethwait JH, Saul SH, Postlethwait JA (1988-01-01). "The antibacterial immune response of the medfly, Ceratitis capitata". Journal of Insect Physiology. 34 (2): 91–96. doi:10.1016/0022-1910(88)90159-X.
  22. ^ Sela S, Nestel D, Pinto R, Nemny-Lavy E, Bar-Joseph M (July 2005). "Mediterranean fruit fly as a potential vector of bacterial pathogens". Applied and Environmental Microbiology. 71 (7): 4052–6. Bibcode:2005ApEnM..71.4052S. doi:10.1128/AEM.71.7.4052-4056.2005. PMC 1169043. PMID 16000820.
  23. ^ Briceño R (1999). "Aggressive behavior in medflies (Ceratitis Capitata) and its modification by mass rearing (Diptera:Tephritidae)". Journal of the Kansas Entomological Society. 72 (1): 17–27. hdl:10088/18756?show=full.
  24. ^ "County planning quarantine after Medfly discovery in Escondido". September 16, 2009.
  25. ^ Hendrichs J, Ortiz G, Liedo P, Schwarz A (1983-01-01). "Six years of successful medfly program in Mexico and Guatemala". Fruit Flies of Economic Importance: 353–365.
  26. ^ Fisher KT, Hill AR, Sproul AN (1985). "Eradication of Ceratitis Capitata (Wiedemann) (Diptera: Tephritidae) in Carnarvon, Western Australia". Australian Journal of Entomology. 24 (3): 207–208. doi:10.1111/j.1440-6055.1985.tb00228.x.
  27. ^ Leftwich, Philip T.; Koukidou, Martha; Rempoulakis, Polychronis; Gong, Hong-Fei; Zacharopoulou, Antigoni; Fu, Guoliang; Chapman, Tracey; Economopoulos, Aris; Vontas, John; Alphey, Luke (2014-10-07). "Genetic elimination of field-cage populations of Mediterranean fruit flies". Proceedings of the Royal Society B: Biological Sciences. 281 (1792): 20141372. doi:10.1098/rspb.2014.1372. ISSN 0962-8452. PMC 4150327. PMID 25122230.
  28. ^ Kenneth J. Garcia (November 10, 1989). "After Nearly a Decade, Officials Are Still Defending Malathion". Los Angeles Times.
  29. ^ Susan Shroder (November 14, 2008). "Medfly treatment begins In El Cajon". San Diego Union-Tribune. Archived from the original on 2013-02-02.
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Ceratitis capitata: Brief Summary

provided by wikipedia EN

Ceratitis capitata, commonly known as the Mediterranean fruit fly or medfly, is a yellow-and-brown fly native to sub-Saharan Africa. It has no near relatives in the Western Hemisphere and is considered to be one of the most destructive fruit pests in the world. There have been occasional medfly infestations in California, Florida, and Texas that require extensive eradication efforts to prevent the fly from establishing itself in the United States.

C. capitata is the most economically important fruit fly species because of both its ability to survive cooler climates more successfully than most other fly species and its ability to inhabit more than 200 tropical fruits and vegetables to which it causes severe destruction and degradation. The practices that are used to eradicate the medfly after its introduction into a new environment can be extremely difficult and expensive, but infestation of C. capitata lowers crop yields and induces costly sorting processes for fresh fruits and vegetables.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Ceratitis capitata ( Spanish; Castilian )

provided by wikipedia ES

Ceratitis capitata es una especie de díptero braquícero de la familia Tephritidae originaria de la costa occidental de África, donde viven especies muy cercanas. Desde allí se extendió a zonas con climas templados, subtropicales y tropicales de los dos hemisferios. Se le considera una especie cosmopolita por la dispersión mundial que actualmente tiene debida en gran medida al aumento del comercio mundial de frutas.

A pesar de su origen se le suele denominar mosca mediterránea de la fruta, ya que es en estos países del mediterráneo donde su incidencia económica en los cultivos es mayor. También se le denomina a veces simplemente mosca de la fruta aunque este nombre corresponde a otras especies de moscas.

Ciclo biológico

La duración del ciclo depende de la temperatura. La actividad se reduce durante el invierno, que normalmente pasa en estado de pupa. Si la temperatura pasa de 14 °C se reactiva. En zonas de clima suave, puede completar de 6 a 8 generaciones anuales.

Al terminar el invierno, el insecto adulto sale del pupario que se encuentra enterrado en el suelo cerca de los árboles y busca un lugar soleado, 15 minutos después el tegumento se endurece y adopta la coloración típica de la especie. Después comienza a volar, ya que tiene entonces sus alas desarrolladas aunque sus órganos sexuales todavía no.

Realiza vuelos cortos y se posa donde encuentra sustancias azucaradas, con predilección por las frutas, ya que son necesarias para alcanzar su madurez sexual. El macho segrega una feromona que es reconocida por la hembra a la que atrae y así realiza el encuentro y el apareamiento.

La hembra fecundada inicia la puesta en la pulpa de la fruta, atraída por el olor y el color (prefiere el amarillo y el naranja, por ello las frutas no maduras no les atraen).

Una sola cópula en la vida de la hembra es suficiente para la fertilización continua de todos los huevos que vaya poniendo. Si las temperaturas son favorables los huevos eclosionan en unos dos días.

Las larvas se alimentan de la pulpa de la fruta en la que producen galerías. Una vez que completan su desarrollo larvario, salen del fruto, y se dejan caer al suelo donde se entierran y pasan la fase de pupa.

Las moscas adultas tienen una limitada capacidad de expansión, pero el comercio global de frutas es capaz de transportar frutas infectadas miles de kilómetros en poco tiempo, ayudando a su dispersión.

Daños en la agricultura

En España esta especie está muy extendida, sobre todo en el sur y zona mediterránea. Afecta a multitud de especies cultivadas como; naranja, mandarina, melocotón, higo, albaricoque, ciruela, kaki etc., por lo que su control es difícil. Las únicas producciones que escapan a sus ataques son las obtenidas desde final de otoño a principio de primavera ya que el frío de esa época hace que el insecto no muestre actividad.

El daño producido en el fruto es el que produce la larva de esta mosca que se alimenta de la pulpa de las frutas, dejando dentro de ella todos sus excrementos, además de servir de vía de contaminación para distintos tipos de hongos, que producen putrefacción, lo cual hace que esos frutos se caigan al suelo antes de tiempo o no sean comercializables.

Control fitosanitario

En la actualidad en España en control fitosanitario de este insecto se basa en uno o más de los siguientes métodos

  • Tratamientos fitosanitarios con alguno de los productos autorizados en cada cultivo.
  • Trampeo masivo. Se trata de poner un número elevado de trampas que atraen a la mosca y una vez que entra les impide su salida y mueren. Es más efectivo cuanto mayor sea la superficie en la que se dispongan las trampas.
  • Uso de machos estériles. Lo realizan normalmente organismos oficiales sobre grandes superficies. Se trata de soltar en el campo machos de este insecto de forma masiva. Machos que previamente se han criado y esterilizado mediante radiación. Estos machos se aparean con las hembras silvestres y por tanto evitan que se apareen con machos silvestres no estériles, dando lugar a puestas de huevos no viables.

Control biológico

Hasta el momento, el control biológico de este insecto no está conseguido, pero son numerosos los estudios que se están realizando con el objetivo de conseguir que sean los enemigos naturales de este insecto los que lo controlen. Uno de los enemigos naturales que se está estudiando es Diachasmimorpha tryoni una avispilla cuyas hembras parasitan las larvas de C. capitata,[1]​ pero aún los estudios se encuentran en sus primeras fases.

Invasiones

En los Estados Unidos de América, C. capitata se ha extendido por cuatro estados (Hawái, California, Texas y Florida), pero fue erradicado de todos menos Hawái. También ha sido erradicada de Nueva Zelanda y Chile.

La crisis de la mosca de la fruta en California

Se han realizado muchas investigaciones y se han dedicado muchos medios para controlar esta mosca en California. En particular el uso de machos estériles ha conseguido erradicar esta especie en muchas zonas.

En 1982, el gobernador de California Jerry Brown, que había adquirido una reputación de ambientalista, se enfrentó a una severa infestación de esta mosca en el área de la bahía de San Francisco. Bajo la presión de la industria agrícola del estado, que creía que estaban amenazados cientos de miles de dólares de sus producciones, Brown autorizó tratamientos masivos contra ella. Flotillas de helicópteros pulverizaron con el insecticida malatión por las noches, y la Guardia Nacional de California puso controles en las carreteras y requisó toneladas de fruta posiblemente infectada; en la parte final de la campaña se liberaron millones de machos de mosca de la fruta estériles en un intento de romper su ciclo reproductivo.

Finalmente la plaga fue erradicada, pero el tamaño de la campaña creó controversia. Algunas personas aseguraban que el malatión es tóxico para las personas, además de para los insectos. En respuesta a estas objeciones, el jefe del gabinete de Brown B. T. Collins, dio una rueda de prensa en la cual se bebió un pequeño vaso de malatión. Hubo personas que se quejaron diciendo que aunque el insecticida no fuese muy tóxico para las personas las pulverizaciones que se hicieron resultaban corrosivas para las pinturas de los coches.

Durante la semana del 9 de septiembre de 2007, se encontraron adultos y larvas de la mosca en Dixon (California). El departamento de Agricultura y Alimentación de California y funcionarios del estado y del condado comenzaron una cuarentena en esa zona.

 src=
Ceratitis capitata macho

El 4 de noviembre de 2008, se encontraron cuatro adultos en El Cajón (California). La Comisión de Agricultura del condado de San Diego establecieron un plan de tratamientos, incluyendo la distribución de millones de machos estériles, cuarentena de producciones locales, y pulverizaciones al suelo con insecticidas ecológicos.[2]

Referencias

  1. Sabater-Muñoz, Beatriz et al (2009), Levante Agrícola nº 398 372-375
  2. San Diego Union-Tribune Medfly Treatment Begins In El Cajon, November 14, 2008

 title=
license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Ceratitis capitata: Brief Summary ( Spanish; Castilian )

provided by wikipedia ES

Ceratitis capitata es una especie de díptero braquícero de la familia Tephritidae originaria de la costa occidental de África, donde viven especies muy cercanas. Desde allí se extendió a zonas con climas templados, subtropicales y tropicales de los dos hemisferios. Se le considera una especie cosmopolita por la dispersión mundial que actualmente tiene debida en gran medida al aumento del comercio mundial de frutas.

A pesar de su origen se le suele denominar mosca mediterránea de la fruta, ya que es en estos países del mediterráneo donde su incidencia económica en los cultivos es mayor. También se le denomina a veces simplemente mosca de la fruta aunque este nombre corresponde a otras especies de moscas.

license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Ceratitis capitata ( French )

provided by wikipedia FR

Ceratitis capitata, la mouche méditerranéenne des fruits, est une espèce d'insectes diptères de la famille des Tephritidae, originaire d'Afrique subsaharienne. C'est la seule espèce de son genre présente en Europe.

C'est un insecte ravageur de nombreuses cultures fruitières, présent dans toutes les régions de climat méditerranéen des deux hémisphères.

Noms vernaculaires : mouche méditerranéenne des fruits, mouche méditerranéenne, mouche des fruits, mouche de l'oranger, cératite[1].

Synonymie

  • Tephritis capitata (Wiedemann, 1824)
  • Trypeta capitata (Wiedemann, 1824)
  • Ceratitis hispanica (Breme, 1842)
  • Ceratitis citriperda (Macleay, 1829)
  • Ceratitis citripeda (Efflatoun, 1924)
  • Pardalaspis asparagi (Bezzi, 1924)

Biologie

Cycle de vie

Les mouches adultes pondent leur œufs sous l'épiderme des fruits, particulièrement là où la peau est déjà déchirée. L'œuf éclot au bout de trois jours, et la larve se développe à l'intérieur du fruit en se nourrissant de la pulpe. Les adultes n'ont qu'une faible capacité à se disperser mais le commerce international des fruits peut transporter des fruits infectés à des milliers de kilomètres.

Ennemis naturels

La mouche méditerranéenne des fruits est attaquée par de nombreuses espèces de guêpes parasitoïdes de la famille des Braconidae. Certaines d'entre elles, telles que Diachasmimorpha tryoni et Diachasmimorpha longicaudata, sont capables de détecter les larves à l'intérieur des fruits. Les guêpes déposent leurs œufs dans le corps des asticots grâce à leur ovipositeur. La larve de la guêpe se développe en consommant son hôte au cours de la nymphose. La guêpe adulte émerge ensuite de la pupe[2] du défunt asticot.

De nombreux prédateurs généralistes des insectes attaquent également la mouche des fruits, c'est le cas notamment des fourmis (comme Linepithema humile, la fourmi d'Argentine ou Solenopsis geminata, la fourmi de feu tropicale)[3], araignées, mantes et réduves. Les oiseaux, notamment les poules, attaquent les larves qui émergent des fruits, tandis que certains nématodes entomopathogènes du sol attaquent les larves, lorsque celles-ci s'enterrent pour la nymphose, ou les pupes (chrysalides)[2],[4].

Description

Œuf : blanc, fuselé, 1 mm de long.

Larve : blanc jaunâtre longue de 7 à 8 mm.

Nymphe : pupe marron rougeâtre.

L'adulte mesure de 5 à 6 mm de long[5], soit environ les deux tiers de la taille d'une mouche domestique. Le corps est de couleur jaunâtre, virant au brun dans certaines parties, en particulier l'abdomen, les pattes et certaines taches sur les ailes. L'abdomen de forme ovale, est revêtu à la face supérieure de fines soies noires dispersées, et présente deux bandes transversales plus claires dans la partie basale. La femelle se distingue par son abdomen plus volumineux et par sa longue tarière située à l'extrémité de l'abdomen.

Le thorax est convexe à sa face supérieure, de couleur blanc-crème à jaunâtre, marbré de taches noires. Le scutellum est noir dans sa moitié apicale, traversée par une ligne jaune sinueuse sub-basale.

Les ailes, longues de 4 à 6 mm, sont généralement tenues dans une position tombante chez les mouches vivantes. Elles sont larges, transparentes et vitreuses avec des marques noires, brunes et jaune brunâtre, avec des reflets plus ternes. Elles présentent dans leur milieu une bande transversale assez large, jaune brunâtre.

Le mâle porte sur la tête, insérées entre les yeux près des antennes, deux soies orbitales modifiées en appendices spatulés, à l'extrémité pointue, un peu en forme de losange, et de couleur noire. Ces appendices différencie la mouche méditerranéenne des fruits des espèces apparentées du sous-genre Ceratitis. Les yeux sont pourpre rougeâtre[6],[7].

Distribution

L'aire de répartition de la Cératite, Ceratitis capitata, comprend l'Afrique, le bassin méditerranéen et de nombreuses régions du monde, incluant l'Australasie, l'Amérique centrale et l'Amérique du Sud (notamment le Brésil).

Pays dans lesquels la mouche méditerranéenne des fruits, Ceratitis capitata, est établie :

En Amérique du Nord, l'espèce a été introduite aux États-Unis (Floride, Californie, Texas), aux Bermudes et au Mexique[8], mais elle y a été déclarée officiellement éradiquée. Elle n'est plus présente sur le territoire américain qu'à Hawaï. Elle a également été éradiquée au Belize, au Chili, dans le sud de l'Ukraine et en Nouvelle-Zélande[9] où elle avait été introduite accidentellement[7].

Invasions

L'espèce est responsable de 900 millions de dollars de perte par an dans les seuls vergers californiens.

Elle cause des dommages dans une grande gamme de cultures fruitières.

La cératite représente un important insecte ravageur, provoquant de gros dégâts dans les cultures fruitières (en particulier les agrumes et les pêches). Les dommages résultent à la fois des piqûres lors de la ponte dans les fruits, l'alimentation par les larves, et la décomposition des tissus végétaux par des micro-organismes envahisseurs secondaires (bactéries, champignons) entraînant la putréfaction des fruits[10].

Contrôle

Des recherches ont été menées pour chercher à contrôler cette mouche. En particulier, l'utilisation de la technique de mâles stériles a permis l'éradication de l'espèce dans plusieurs régions.

En 1980, on a également tenté de l'éradiquer en Californie par l'épandage de malathion par hélicoptère pendant plusieurs mois.

Notes et références

  1. (en) « Ceratitis capitata ( CERTCA ) », OEPP (consulté le 30 août 2014).
  2. a et b (en) Amy Allen, « Ceratitis capitata », sur Animal Diversity Web (ADW), 2006 (consulté le 22 mai 2016).
  3. (en) Jeffrey N. L. Stibick, « Natural Enemies of True Fruit Flies (Tephritidae) », sur APHIS - Plant Protection and Quarantin, USDA, décembre 2004 (consulté le 22 mai 2016).
  4. (en) Cristhiane Rohde, Alcides Moino Junior, Fabiano D. Carvalho, Marco A. T. da Silva, « Selection of entomopathogenic nematodes for the control of the fruit fly Ceratitis capitata (Diptera: Tephritidae) », Revista Brasileira de Ciências Agrárias, Universidade Federal Rural de Pernambuc, vol. 7,‎ 2012, p. 797-802 (ISSN , lire en ligne)
  5. Mouche à fruit. Ceratitis capitata. Insecte de La Réunion sur le site mi-aime-a-ou consulté le 21 janvier 2017
  6. (en) Ronald F.L. Mau, Jayma L.Martin Kessing, « Ceratitis capitata (Wiedemann) », sur Crop Knowledge Master, Université de Hawaï, College of Tropical Agriculture and Human Resources (consulté le 19 mai 2016).
  7. a b et c « Fiche informative sur les organismes de quarantaine - Ceratitis capitata », sur Organisme de quarantaine OEPP, Organisation européenne et méditerranéenne pour la protection des plantes (consulté le 19 mai 2016).
  8. (es) David Castellanos Hernández, « Mosca del Mediterráneo », SENASICA, 22 mai 2015 (consulté le 22 mai 2016).
  9. (en) George Gill,, « Queensland fruit fly responses (2014) », sur Ministry of Primary Industries (consulté le 22 mai 2016).
  10. « 100 of The Worst », sur DAISIE (Delivering Alien Invasive Species Inventories for Europe) (consulté le 1er septembre 2012)

Références externes

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Ceratitis capitata: Brief Summary ( French )

provided by wikipedia FR

Ceratitis capitata, la mouche méditerranéenne des fruits, est une espèce d'insectes diptères de la famille des Tephritidae, originaire d'Afrique subsaharienne. C'est la seule espèce de son genre présente en Europe.

C'est un insecte ravageur de nombreuses cultures fruitières, présent dans toutes les régions de climat méditerranéen des deux hémisphères.

Noms vernaculaires : mouche méditerranéenne des fruits, mouche méditerranéenne, mouche des fruits, mouche de l'oranger, cératite.

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Mosca da froita mediterránea ( Galician )

provided by wikipedia gl Galician
Non confundir con Drosophila melanogaster.
 src=
Larva de Ceratitis capitata.

A mosca da froita mediterránea (Ceratitis capitata) é unha especie de díptero da familia Tephritidae que pode ser unha praga para as colleitas de froitas. Abunda na costa mediterránea, onde produce os maiores danos, de aí o seu nome, pero está estendida por todo o mundo. Non se debe confundir coa mosca do vinagre Drosophila melanogaster e outras Drosophilidae, que tamén se chaman moscas da froita (igual que outras especies de Tephritidae).

Ciclo biolóxico

A duración do ciclo depende da temperatura. A actividade redúcese durante o inverno, que normalmente pasa en estado de pupa. Se a temperatura pasa de 14 °C reactívase. En zonas de clima suave, pode completar de 6 a 8 xeracións anuais.

O insecto, ao terminar o inverno, sae do pupario, que está enterrado no chan preto de árbores, e procura un lugar solleiro; 15 minutos despois os tegumentos endurécense e toman a coloración típica da especie. Despois comenza a voar, xa que teñen entón as súas ás desenvolvidas, aínda que non os seus órganos sexuais.

Realiza voos curtos e póusase onde encontra substancias azucradas, con predilección polas froitas, xa que lle son necesarias para alcanzar a súa madurez sexual. O encontro entre o macho e a femia prodúcese cando o macho segrega unha feromona, que é recoñecida pola femia, á que atrae, e ten lugar o apareamento.

A femia fecundada inicia a posta na polpa da froita, atraída polo olor e cor (prefiren o amarelo e o laranxa, polo que as froitas non maduras non as atraen, nin as podres).

Para a fertilización de todos os ovos que vaia poñendo abonda cunha soa cópula na vida da femia. Se as temperaturas son favorables os ovos eclosionan nuns dous días.

As larvas aliméntanse da polpa da froita na que producen galerías. Unha vez que completan o seu desenvolvemento larvario, saen do froito, e déixanse caer ao chan, onde se enterran e pasan a fase de pupa.

As moscas adultas teñen unha limitada capacidade de expansión, pero o comercio global de froitas distribúe accidentalmente froitas infectadas a miles de quilómetros de distancia en pouco tempo, axudando ao seu espallamento. Ver Mapa da distribución xeográfica de Ceratitis capitata (Actualizado en decembro de 2013).

Danos na agricultura

En España esta especie está moi estendida, sobre todo no sur e zona mediterránea. Afecta a multitude de especies cultivadas como: laranxa, mandarina, melocotón, figo, albaricoque, ameixas, kaki etc. O seu control é difícil, xa que está moi estendida. As únicas producións que escapan aos seus ataques son as obtidas desde final de outono a principios de primavera, xa que o frío desa época fai que o insecto non mostre actividade.

O dano producido no froito é causado pola larva, que se alimenta da polpa das froitas, deixando dentro da froita os seus excrementos, ademais de servir de vía de contaminación para distintos tipos de fungos, que producen putrefacción, o cal fai que eses frutos caian ao chan antes de tempo ou non se poidan comercializar.

Control fitosanitario

Actualmente en España o control fitosanitario deste insecto baséase nun ou máis dos seguintes métodos:

  • Tratamentos fitosanitarios con algún dos produtos autorizados en cada cultivo.
  • Trampeo masivo. Trátase de poñer un número elevado de trampas que atraen á mosca e unha vez que entra lles impiden a súa saída e morren. É máis efectivo canto maior sexa a superficie na que se dispoñan as trampas.
  • Uso de machos estériles. Realízano normalmente organismos oficiais sobre grandes superficies. Consiste en soltar no campo machos deste insecto de forma masiva, que foron previamente criados e esterilizados mediante radiación. Estes machos aparéanse coas femias silvestres e, por tanto, evitan que se apareen con machos silvestres non estériles, dando lugar a postas de ovos non viables.

Control biolóxico

Ata o momento, o control biolóxico deste insecto non se conseguiu, pero son numerosos os estudos que se están a realizar co obxectivo de conseguir que sexan os inimigos naturais deste insecto os que o controlen. Un dos inimigos naturais que se está estudando é Diachasmimorpha tryoni unha avespa cuxas femias parasitan as larvas de C. capitata,[1] pero estes estudos aínda se encontran nas súas primeiras fases.

Invasións

Ademais de na zona mediterránea, esta mosca orixinou pragas en varios países. Nos Estados Unidos de América, C. capitata estendeuse por catro estados (Hawai, California, Texas e Florida), pero foi erradicada de todos menos Hawai. Tamén foi erradicada de Nova Zelandia e Chile. En 1982 houbo unha gran praga en California na que se realizaron fumigacións masivas co insecticida malation e liberáronse millóns de machos estériles, conseguindo a súa erradicación.[2]

 src=
Ceratitis capitata pousada nunha folla.

Notas

  1. Sabater-Muñoz, Beatriz et al (2009), Levante Agrícola nº 398 372-375
  2. San Diego Union-Tribune Medfly Treatment Begins In El Cajon, November 14, 2008

Véxase tamén

license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia gl Galician

Mosca da froita mediterránea: Brief Summary ( Galician )

provided by wikipedia gl Galician
Non confundir con Drosophila melanogaster.  src= Larva de Ceratitis capitata.

A mosca da froita mediterránea (Ceratitis capitata) é unha especie de díptero da familia Tephritidae que pode ser unha praga para as colleitas de froitas. Abunda na costa mediterránea, onde produce os maiores danos, de aí o seu nome, pero está estendida por todo o mundo. Non se debe confundir coa mosca do vinagre Drosophila melanogaster e outras Drosophilidae, que tamén se chaman moscas da froita (igual que outras especies de Tephritidae).

license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia gl Galician

Ceratitis capitata ( Indonesian )

provided by wikipedia ID

Ceratitis capitata adalah spesies lalat yang tergolong famili Tephritidae. Spesies ini juga merupakan bagian dari ordo Diptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia.

Kebanyakan anggota spesies ini bertelur dalam jaringan tumbuhan, tempat larva menemukan makanan pertamanya setelah lahir. Lalat dewasa biasanya berumur sangat pendek. Beberapa hidup selama kurang dari seminggu.

Referensi

  • Bisby F.A., Roskov Y.R., Orrell T.M., Nicolson D., Paglinawan L.E., Bailly N., Kirk P.M., Bourgoin T., Baillargeon G., Ouvrard D. (red.) (2011). "Species 2000 & ITIS Catalogue of Life: 2011 Annual Checklist.". Species 2000: Reading, UK. Diakses pada 24 September 2012.


license
cc-by-sa-3.0
copyright
Penulis dan editor Wikipedia
original
visit source
partner site
wikipedia ID

Ceratitis capitata: Brief Summary ( Indonesian )

provided by wikipedia ID

Ceratitis capitata adalah spesies lalat yang tergolong famili Tephritidae. Spesies ini juga merupakan bagian dari ordo Diptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia.

Kebanyakan anggota spesies ini bertelur dalam jaringan tumbuhan, tempat larva menemukan makanan pertamanya setelah lahir. Lalat dewasa biasanya berumur sangat pendek. Beberapa hidup selama kurang dari seminggu.

license
cc-by-sa-3.0
copyright
Penulis dan editor Wikipedia
original
visit source
partner site
wikipedia ID

Ceratitis capitata ( Italian )

provided by wikipedia IT

La mosca mediterranea della frutta o, impropriamente, mosca della frutta (Ceratitis capitata Wiedemann, 1824), è un insetto fitofago dell'ordine dei Ditteri Brachiceri (Sezione Cyclorrhapha Schizophora, sottosezione Acalyptratae, famiglia Tephritidae). La sua larva si sviluppa come carpofago e polifago all'interno della polpa di molti frutti. È una delle avversità economicamente più rilevanti a carico della frutta estiva prodotta in ambiente mediterraneo.

Distribuzione e importanza

L'origine della specie è incerta. La letteratura cita come possibili areali di origine l'Africa subsahariana o l'Africa occidentale, da cui nell'arco di un secolo si è insediata nel bacino del Mediterraneo in vaste aree del sud e centro Europa. La distribuzione della specie è ampiamente dipendente dalle condizioni climatiche, con potenziali rischi legati all'incremento dell'areale di distribuzione a causa dei cambiamenti climatici[1]. Attualmente è una specie cosmopolita, presente tutto l'anno nelle regioni tropicali e subtropicali di tutti i continenti: Nordamerica, Sudamerica, Asia, Oceania. Nelle zone temperate la sua presenza è stagionale. La specie è stata eradicata in Nuova Zelanda e nelle Hawaii. È inoltre presente negli Stati Uniti meridionali (California, Texas, Florida) e in Messico. L'eradicazione nel Nordamerica, avvenuta negli anni ottanta, è stata temporanea in quanto è documentata la sua ricomparsa in più riprese in California[2].

È ritenuta una delle specie più temibili per la frutticoltura a causa del suo notevole potenziale biologico, della sua estrema polifagia (oltre 250 specie agrarie attaccate), della difficoltà di controllo e dell'entità dei danni (gli attacchi possono interessare anche il 100% della produzione). In Italia è particolarmente dannosa su alcune drupacee (pesco e albicocco), sul fico, sul fico d'India e sul caco. In annate di gravi infestazioni gli attacchi si riversano anche sulle pomacee (melo, pero, nespolo del Giappone), sulla fragola, sul kiwi. Sugli agrumi gli attacchi si sono in genere rivelati di minore gravità rispetto ad altri fruttiferi, grazie all'azione inibente esercitata dall'olio essenziale contenuto nel flavedo, ma negli ultimi anni i danni si manifestano di maggiore entità, probabilmente per una maggiore diffusione di tipi genetici ad ovopositore più lungo, in grado di deporre le uova più in profondità. In ogni modo gli agrumi sono gli ospiti fondamentali per le generazioni tardive nei Paesi del bacino del Mediterraneo.

L'importanza economica di questo insetto è rilevante al punto che in certi Paesi è oggetto di regolamenti fitosanitari che impongono barriere commerciali alla frutta d'importazione per evitare l'introduzione di focolai d'infestazione.

Morfologia

 src=
Una suggestiva immagine dell'adulto

L'adulto è lungo 4-6 mm, con il corpo a tonalità grigie e giallastre. Ha un capo giallastro con occhi rossi e iridescenti nell'insetto vivo; la fronte del maschio presenta due lunghe setole ingrossate all'apice (capitate) a forma di spatole. Da queste spatolette derivano sia il nome generico che quello specifico (dal greco kera, corno, e dal latino capitatus, a testa grossa); esse hanno forse un ruolo nella comunicazione sonora e visiva. Il torace è nero con macchie bianche che formano un disegno caratteristico. L'addome è arrotondato o affusolato all'estremità secondo il sesso, di colore giallo-rossastro con due bande grigie nel III e V urite. Le ali mostrano una caratteristica pigmentazione zonale, con una stria longitudinale bruno-aranciata lungo il margine costale e altre due trasversali, più brevi, sempre di colore bruno-aranciato.

L'uovo è allungato e leggermente ricurvo (mm 1,0x0,2 circa) di colore bianco lucente, con area micropilare sporgente. La femmina depone in genere più uova all'interno della cavità praticata dall'ovopositore.

La larva è apode, allungata, subconica, ristretta verso il capo, di colore bianco-giallastro. Le larve neonate sono lunghe meno di un millimetro e sono percettibili con difficoltà ad occhio nudo. La larva matura è lunga 7-9 mm. Si distingue da quella della mosca delle olive per il diverso profilo delle mandibole e degli scleriti dell'apparato cefalo-faringeo.

La pupa, derivata dalla muta della larva matura è protetta all'interno del pupario, una capsula ellittica formata da una trasformazione dell'esuvia dell'ultima muta larvale, di colore rossastro. Il pupario è lungo 4-5 mm. In alcuni ceppi i pupari da cui sfarfalleranno le femmine sono di colore bianco, quelli da cui sfarfalleranno i maschi sono invece bruno-rossastri.

Biologia

 src=
Femmina di Ceratitis all'atto dell'ovideposizione

La femmina depone le uova preferibilmente su frutti ad alto tenore in zuccheri, a basso grado di acidità e con polpa tenera. Esiste perciò una scala di preferenza che orienta le infestazioni con il procedere della stagione. Ad esempio, nell'Italia meridionale, in piena estate, gli attacchi s'indirizzano preferibilmente sul pesco, sull'albicocco, sul fico e sulle varietà precoci di pero, mentre in genere è evitato il susino. Nella tarda estate gli attacchi si estendono anche ad altre varietà di pero, al melo, talvolta al susino e all'uva, ma soprattutto al fico d'India e alle varietà precoci di kaki. In autunno gli attacchi proseguono sul fico d'India e sul kaki per passare infine agli agrumi, in particolare il clementine e gli aranci precoci del gruppo Navel (Naveline).

All'atto dell'ovideposizione, la femmina incurva l'addome, estroflette l'ovopositore e penetra l'epicarpo del frutto, lasciando più uova nella cavità. In genere vengono deposte 4-6 uova per puntura, fino ad un massimo di una decina. Una femmina può praticare anche diverse punture sullo stesso frutto, perciò si possono deporre anche diverse decine di uova in un solo frutto. Nel corso della sua vita una femmina può deporre da poche centinaia fino ad un migliaio di uova, pertanto può attaccare centinaia di frutti.

Le larve si sviluppano all'interno della polpa provocandone il disfacimento. A maturità fuoriescono dal frutto, si lasciano cadere e s'impupano nel terreno. Contrariamente alla mosca dell'olivo, lo stadio di pupa si svolge sempre fuori dal frutto attaccato.

La durata del ciclo di sviluppo, dalla deposizione dell'uovo allo sfarfallamento dipende dalla temperatura e varia da un minimo di 2 settimane (a 29 °C in laboratorio), ad un massimo di 3 mesi (10-12 °C). In condizioni ordinarie, la durata di una generazione estiva è dell'ordine di 20-30 giorni. Sotto i 9 °C l'attività biologica si arresta completamente.

Nelle regioni a inverno mite la specie sverna soprattutto allo stadio di pupa nel terreno, ad alcuni centimetri di profondità. Nelle zone agrumicole sverna anche come adulto o come larva negli agrumi. Temperature inferiori ai 2 °C per una settimana provocano la morte delle pupe. Nelle regioni tropicali le generazioni si susseguono ininterrottamente per tutto l'anno.

Dinamica di popolazione

La dinamica di popolazione è apparentemente complessa in quanto varia secondo la regione geografica e secondo le annate. In realtà la dinamica è determinata da tre condizioni: il decorso termico stagionale, con particolare riferimento alla stagione fredda, la disponibilità alimentare, il potenziale riproduttivo della specie. Dal momento che il potenziale biologico aumenta di generazione in generazione, la pericolosità della specie dipende dal numero di generazioni che si ripetono nell'arco dell'anno e dalla rapidità con cui si sviluppa la prima generazione. Per questo motivo la pericolosità della specie è strettamente legata alla latitudine:

  • Nelle regioni tropicali e subtropicali la specie è attiva tutto l'anno e ha quindi una pericolosità elevata soprattutto in relazione alla disponibilità alimentare.
  • Nelle regioni temperato-calde (ad esempio nell'Italia meridionale), l'attività biologica subisce un rallentamento, ma la specie sverna facilmente usando come ospiti gli agrumi. In genere la specie compie 6-7 generazioni l'anno.
  • Nelle regioni temperate (ad esempio nell'Italia settentrionale e centrale) la presenza della specie è solo stagionale in quanto riesce a svernare solo in condizioni microclimatiche particolari. I focolai d'infestazione sono costituiti dalla frutta importata dalle regioni meridionali e, in condizioni particolari, dagli adulti che sfarfallano da pupe svernanti in ambienti protetti (magazzini). In queste regioni la pericolosità è pertanto limitata alle produzioni frutticole in piena estate. A latitudini maggiori di 41° la Ceratitis svolge al massimo 3-4 generazioni e l'entità dei danni dipende soprattutto dal decorso stagionale e dall'epoca di comparsa dei primi adulti.

Danni

Nell'Italia meridionale le infestazioni iniziano con una marcata intensità dopo la metà di giugno, con una variabilità che dipende da fattori ambientali (es. vocazione agrumicola della regione) e stagionali (inverno mite e primavera calda). In Sardegna, in genere, riescono a sfuggire agli attacchi di mosca le cultivar precoci di pesco e albicocco, mentre quelle che maturano dalla seconda metà di giugno in poi sono suscettibili di gravi danni che, in assenza di controllo, possono giungere anche al 100%. In ogni modo, secondo la regione, l'epoca di comparsa varia da aprile agli inizi di luglio.

Nei primi giorni i sintomi sono poco visibili, ma ben presto la parte del frutto circostante la puntura diventa più scura e in seguito allo sviluppo larvale la polpa imbrunisce e diventa marcescente. Ad alte temperature il deterioramento di un frutto colpito si verifica in pochi giorni. Negli agrumi si forma un alone intorno alla puntura. Sui frutti verdi si nota una leggera decolorazione in corrispondenza dell'alone, che tende poi a invaiare più precocemente delle zone non punte. In genere i danni alle arance sono solo di natura estetica perché le larve neonate muoiono prima di raggiungere la polpa. Più sensibili sono invece il mandarino e le clementine. Negli ultimi anni si sta verificando una maggiore incidenza dei danni anche all'arancio e il fatto sembra sia correlato ad una maggiore frequenza di femmine che hanno un ovopositore più lungo.

Difesa

La difesa dei fruttiferi nei confronti della Ceratitis si è sempre rivelata problematica.

Lotta chimica

La lotta chimica richiede l'impiego di principi attivi ad azione citotropica, in grado di penetrare nel frutto e svolgere la loro azione preventiva o curativa nei confronti delle larve neonate. Di nessuna utilità è il trattamento larvicida nei confronti delle larve che hanno già intrapreso lo sviluppo in quanto il danno si è ormai già verificato.

La lotta a calendario prevede la protezione dei frutti ripetendo il trattamento in prossimità dello scadere dell'intervallo di carenza. Questo approccio è poco efficace e di notevole impatto ambientale ed economico:

  • L'ultimo trattamento deve in ogni modo rispettare l'intervallo di carenza prima della raccolta, perciò sussiste una fase, in prossimità della raccolta, in cui i frutti non sono adeguatamente protetti ed hanno un'alta suscettibilità. In piena estate pertanto le larve nate dalle ovideposizioni su frutti prossimi alla raccolta possono causare sensibili perdite di prodotto.
  • L'impossibilità di individuare le infestazioni sul nascere costringe ad iniziare i trattamenti con un congruo anticipo con conseguente aumento del numero di interventi.

In definitiva la lotta a calendario comporta un sensibile aumento dei costi, un maggiore impatto sull'entomofauna utile a causa dell'impiego di insetticidi a largo spettro d'azione, un maggiore rischio sulla salute dei consumatori, aspetti negativi che non sono controbilanciati da un'adeguata efficacia.

La lotta guidata è un approccio più razionale, fermo restando che la sospensione dei trattamenti in prossimità della raccolta non garantisce l'incolumità della produzione. Per l'impossibilità di individuare l'inizio delle infestazioni, la lotta guidata si può praticare solo con il monitoraggio degli adulti, impiegando trappole cromotropiche o, meglio, trappole innescate con attrattivi chimici. Dato il notevole potenziale biologico di questa specie, la soglia d'intervento è molto bassa.

I trattamenti chimici si eseguono con i seguenti prodotti, la cui efficacia è variabile secondo il contesto (trattamento adulticida o larvicida):

In alternativa si può ricorrere al trattamento adulticida con l'uso delle esche proteiche avvelenate. Effettuato su grandi superfici ha sempre offerto risultati migliori dei trattamenti larvicidi. In questo caso s'interviene con irrorazioni localizzate (ad esempio a filari alternati su parte della chioma) di prodotti a base di proteine idrolizzate ed un insetticida (estere fosforico o piretroide). Gli adulti sono attirati dall'attrattivo alimentare e vengono uccisi prima della riproduzione. La lotta con le esche si rivela efficace se condotta su grandi superfici e molto precocemente, alla comparsa dei primi adulti (le soglie d'intervento vanno secondo il contesto da valori minimi da 1 a 3-4 adulti fino a massimi di 20-40 adulti per trappola a settimana in condizioni favorevoli alla proliferazione del fitofago). Il contenimento delle ovideposizioni della prima generazione permette di mantenere basso il livello delle infestazioni.

Lotta biologica

La lotta biologica non offre molte prospettive di successo. Pur avendo diversi antagonisti naturali, il potenziale biologico di questa specie è assai alto e solo in contesti particolari gli ausiliari possono esercitare un'efficace azione di controllo. Fra questi è citato nella lettura il controllo biologico nelle isole Hawaii per diversi decenni con specie di Opius introdotte da Filippo Silvestri nel 1913[3].

Nel bacino del mediterraneo non esiste un vero e proprio antagonista ausiliario che possa svolgere un ruolo significativo nella lotta biologica. Contribuiscono al contenimento delle popolazioni alcuni microrganismi e alcuni predatori occasionali. Fra i parassitoidi è stata segnalata l'azione di Opius concolor (Hymenoptera Braconidae) e di Pachyneuron vindemmiae (Hymenoptera Pteromalidae) nel Nordafrica e in Medio Oriente. La prima specie è stata peraltro impiegata in programmi di lotta biologica.

Lotta biotecnica

 src=
Pupari di Ceratitis, alcuni con i fori di sfarfallamento

La lotta biotecnica può essere condotta con la tecnica del maschio sterile e con il mass trapping.

La tecnica del maschio sterile o lotta autocida o SIT (Sterile Insect Technique) consiste nella liberazione di un numero elevato di maschi allevati in cattività e sterilizzati con raggi gamma, ma lasciati attivi nella loro competitività con i maschi naturali (definiti selvatici o selvaggi). Una femmina si accoppia in genere una sola volta, perciò l'elevato numero di maschi sterili riduce nel complesso la fecondità della popolazione e, quindi, il potenziale riproduttivo. Affinché la competizione sia efficace, il rapporto numerico fra maschi sterili e maschi selvatici deve essere di almeno 20. La tecnica si rivela pertanto efficace se attuata sulle prime generazioni, quando il potenziale biologico della specie è ancora basso per la ridotta densità di popolazione. Naturalmente il contenimento della popolazione nelle prime generazioni ha un effetto preventivo impedendo la pullulazione nelle generazioni successive.

La produzione di maschi sterili si attua nelle biofabbriche, impiegando un ceppo genetico particolare che permette di isolare i maschi fin dallo stadio di uovo: in questo ceppo le uova delle femmine sono più sensibili alle alte temperature e l'immersione delle uova per due giorni in acqua calda (34 °C) permette di uccidere le uova delle femmine. Le larve dei maschi sono allevate usando un substrato nutritivo e al termine dello sviluppo si raccolgono i pupari per sottoporli all'irraggiamento sterilizzante prima dello sfarfallamento. I maschi sfarfallati vengono alimentati con una dieta zuccherina e poi refrigerati per mantenerli inattivi. La liberazione si pratica con irrorazioni da mezzi aerei oppure da terra.

Questa tecnica è il metodo di lotta che ha dato i migliori risultati in assoluto, giungendo anche a casi di eradicazione della specie, temporanei (California, Florida) o definitivi (Hawaii). Programmi di lotta biotecnica con l'autocidio sono stati condotti anche in altre regioni, fra cui Spagna, Israele, Messico, Guatemala, Cile, Argentina, Nuova Zelanda, Sudafrica. Pur senza arrivare a risultati ottimali quale, ad esempio, l'eradicazione definitiva, questa tecnica permette di ridurre sensibilmente il numero di trattamenti chimici, giungendo talvolta alla realizzazione di economie di scala in quanto il costo della lotta autocida può abbassarsi sensibilmente rispetto al costo della lotta chimica. Casi eclatanti sono quelli citati dai programmi di lotta nell'Orange County in California (risparmio di circa il 30%) e nella valle del fiume Hex in Sud Africa (risparmio del 65%).

Il problema principale della lotta autocida consiste nel fatto che si può attuare solo su larga scala, a livello comprensoriale o, ancora meglio, regionale, pertanto richiede la predisposizione di piani collettivi a partecipazione pubblica e privata. L'efficacia dei programmi è inoltre subordinata all'adozione di piani di profilassi che impediscano o rallentino l'importazione della mosca.

Il mass trapping si pratica con la dislocazione di trappole, in numero di una per pianta, innescate con attrattivi chimici. Come trappole possono essere impiegate tavolette di legno imbevute di una soluzione di deltametrina oppure tavolette di plexiglas trasparenti cosparse di collante (vischio entomologico). I migliori risultati si ottengono con le tavolette di legno data la loro azione duratura mentre l'uso del vischio entomologico può diventare oneroso a causa della necessità di procedere periodicamente alla sostituzione. Altre trappole utilizzabili sono quelle prodotte dall'industria farmaceutica, già innescate con i relativi attrattivi.

In generale il mass trapping non offre gli stessi risultati del SIT e probabilmente la sua efficacia è subordinata al verificarsi di condizioni contestuali particolari. Va perciò citato come mezzo ausiliario per il contenimento delle popolazioni anche se in determinate condizioni può rivelarsi un'alternativa efficace.

L'uso delle trappole a scopo di monitoraggio è utile in particolare per la lotta chimica guidata. Come trappole si possono impiegare tavolette in plastica trasparenti o bianche cosparse di colla, innescate con attrattivi alimentari o sessuali. Sono invece sconsigliabili le trappole cromotropiche, che essendo poco selettive attirano anche insetti utili.

Gli attrattivi impiegabili per la Ceratitis sono i seguenti:

  • Paraferomoni. Si tratta di principi attivi sintetici che svolgono un'azione di attrazione nei confronti dei maschi. Il più usato è il t-butil-2-metil-4-clorocicloesancarbossilato (nome commerciale Trimedlure).
  • Esche proteiche. Si tratta di proteine idrolizzate che attirano gli adulti. Dal punto di vista chimico sono soluzioni miste di oligopeptidi, amminoacidi e ammoniaca. Sono disponibili diversi formulati commercializzati dall'industria farmaceutica con vari nomi commerciali (Amadene, Attrattivo Caffaro, Buminal, Esca proteica SIAPA, Nutrel, ecc.). Svolgono un'azione di attrazione alimentare.
  • Sali ammoniacali. Si tratta per lo più di fosfati o carbonati di ammonio che svolgono un'azione di attrazione alimentare.

In generale, per aumentare l'efficacia, gli attrattivi alimentari vanno impiegati in combinazione tra loro (esche proteiche con sali ammoniacali) oppure con il feromone sessuale. L'efficacia degli attrattivi alimentari è condizionata negativamente dall'umidità relativa alta.

Lotta integrata

La lotta integrata alla Ceratitis capitata è indispensabile per potenziare i vari metodi di difesa, in particolare quelli basati sulla lotta biotecnica. L'azione più efficace consiste nell'adozione di misure di profilassi tese a impedire la formazione di focolai d'infestazione da cui possono propagarsi le infestazioni. Esempi di tali misure sono i seguenti:

  • Costituzione di barriere commerciali. È attuata in alcuni paesi (es. Giappone, Corea del Nord) con embarghi che impediscono l'importazione di frutta proveniente da Paesi che non applicano un efficace controllo. Negli Stati Uniti è stata adottata in passato nei confronti del clementine spagnolo dopo l'eradicazione della mosca in California.
  • Costituzione di barriere fisiche nei siti d'importazione. È adottata ad esempio in Nuova Zelanda per mezzo del mass trapping nei porti allo scopo di catturare gli adulti che sfarfallano dalla frutta importata.

La difesa nelle produzioni familiari

La Ceratitis è una specie di difficilissimo controllo nelle piccole produzioni familiari, limitate per lo più a poche piante, spesso di più specie, allevate nell'orto o nel giardino casalingo. In queste condizioni operative è in genere improponibile l'adozione della lotta chimica, anche perché con la produzione in proprio di frutta e ortaggi si mira ad un elevato standard qualitativo con l'assenza di residui chimici. L'uso delle trappole dà scarsi risultati in quanto il mass trapping si rivela efficace se applicato su grandi superfici: su piccoli superfici, infatti, gli attrattivi chimici presentano l'inconveniente di attirare gli adulti dai dintorni incrementando quindi la popolazione nel proprio giardino. L'uso di trappole cromotropiche, che hanno un raggio d'azione più breve, è altrettanto sconsigliabile perché sono attive anche contro l'entomofauna utile e alla lunga potrebbero ridurre la capacità intrinseca del giardino di difendersi biologicamente contro le avversità.

Un metodo di difesa rudimentale consiste nel proteggere i singoli frutti o intere branchette fruttifere con sacchi di carta o, meglio, con sacchetti in rete antinsetto[4]. Le protezioni vanno predisposte il più precocemente possibile o almeno prima dell'invaiatura. Queste barriere impediscono l'ovideposizione e si rivelano il metodo più efficace in assoluto. D'altra parte è un metodo proibitivo, spesso ostacolato dalla morfologia della pianta, e richiede una notevole pazienza che può essere ripagata solo dalla soddisfazione di poter assaporare i frutti del proprio orto integri e del tutto salubri, senza il ricorso agli insetticidi. Questo metodo è attuato sporadicamente anche da piccoli produttori di agricoltura biologica con alti costi di produzione che possono essere ripagati solo dall'apprezzamento commerciale del prodotto.

Metodi più semplici consistono nella prevenzione agronomica, ricorrendo a specie frutticole che in genere sfuggono agli attacchi della mosca della frutta. Per le produzioni familiari pertanto è consigliabile ad esempio impiantare cultivar precoci di pesco e albicocco, che in genere sfuggono agli attacchi della seconda generazione, riservando la produzione estiva alla frutta meno vulnerabile come ad esempio le susine o l'uva da tavola, che in genere sono meno apprezzate dalla Ceratitis.

Impieghi utili

 src=
Larve di Ceratitis allevate su un substrato alimentare a base di mais

A fronte dei danni economici causati da questa specie, si oppone un caso, di limitata rilevanza, in cui la mosca della frutta si rivela un organismo utile. La Ceratitis capitata è utilizzata infatti come ospite di sostituzione per l'allevamento dell'Opius concolor, che parassitizza le larve di III età della Mosca delle olive e, secondariamente, quelle di altri Tefritidi. La produzione dell'Opius sulle larve di B. oleae sarebbe tecnicamente impossibile data la monofagia obbligata della mosca delle olive. Le larve di Ceratitis si possono invece allevare facilmente su substrati composti da crusca di frumento, zucchero e integratori probiotici (lievito) e utilizzare come ospiti obbligati per la moltiplicazione del parassitoide.

Note

  1. ^ (EN) Gianni Gilioli, Giorgio Sperandio e Michele Colturato, Non-linear physiological responses to climate change: the case of Ceratitis capitata distribution and abundance in Europe, in Biological Invasions, 5 ottobre 2021, DOI:10.1007/s10530-021-02639-9. URL consultato il 13 ottobre 2021.
  2. ^ Bioinvasions of the Medfly Ceratitis capitata: Source Estimation Using DNA Sequences at Multiple Intron Loci
  3. ^ Tremblay (1991), p. 158.
  4. ^ Le reti antinsetto hanno una trama più fitta delle comuni zanzariere e sono più resistenti all'azione della luce. Sono reperibili nei negozi di prodotti per l'agricoltura.

Bibliografia

  • Ermenegildo Tremblay (1991). Entomologia applicata. Volume III Parte Seconda (Ditteri Brachiceri, Caliptrati esclusi). Liguori, Napoli.
  • Antonio Servadei, Sergio Zangheri & Luigi Masutti (1972). Entomologia generale ed applicata. CEDAM, Padova.
  • Gilioli, G., Sperandio, G., Colturato, M., Pasquali, S., Gervasio, P., Wilstermann, A., ... & Schrader, G. (2021). Non-linear physiological responses to climate change: the case of Ceratitis capitata distribution and abundance in Europe. Biological Invasions, 1-19.
  • Ivo Rigamonti, La Ceratitis capitata in Lombardia, in Quaderni della Ricerca, Regione Lombardia, vol. 47, 2005, pp. 1-42. URL consultato il 23 aprile 2021 (archiviato dall'url originale il 19 dicembre 2012).

 title=
license
cc-by-sa-3.0
copyright
Autori e redattori di Wikipedia
original
visit source
partner site
wikipedia IT

Ceratitis capitata: Brief Summary ( Italian )

provided by wikipedia IT

La mosca mediterranea della frutta o, impropriamente, mosca della frutta (Ceratitis capitata Wiedemann, 1824), è un insetto fitofago dell'ordine dei Ditteri Brachiceri (Sezione Cyclorrhapha Schizophora, sottosezione Acalyptratae, famiglia Tephritidae). La sua larva si sviluppa come carpofago e polifago all'interno della polpa di molti frutti. È una delle avversità economicamente più rilevanti a carico della frutta estiva prodotta in ambiente mediterraneo.

license
cc-by-sa-3.0
copyright
Autori e redattori di Wikipedia
original
visit source
partner site
wikipedia IT

Ceratitis capitata ( Minangkabau )

provided by wikipedia MIN
license
cc-by-sa-3.0
copyright
En
original
visit source
partner site
wikipedia MIN

Middellandse-zeevlieg ( Dutch; Flemish )

provided by wikipedia NL

Insecten

De Middellandse-zeevlieg (of: middellandse zee-boorvlieg) (Ceratitis capitata), is een tweevleugelig insect dat behoort tot de familie boorvliegen (Tephritidae).

De soort wordt soms ook wel mediterrane fruitvlieg genoemd, naar de Engelse naam 'Mediterranean fruit fly'. De Middellandse-zeevlieg behoort echter niet tot de fruitvliegen zoals deze naam suggereert.

De Middellandse-zeevlieg is een invasieve soort die oorspronkelijk afkomstig is uit het Middellandse Zeegebied.

De Middellandse-zeevlieg heeft zich via de internationale fruithandel verspreid tot verschillende werelddelen. De soort komt tegenwoordig voor in delen van Azië en Australië, en Noord- en Zuid-Amerika. De larven van de vlieg brengen grote schade toe aan landbouwgewassen, voornamelijk vruchtendragende planten zoals kersenbomen.

license
cc-by-sa-3.0
copyright
Wikipedia-auteurs en -editors
original
visit source
partner site
wikipedia NL

Middellandse-zeevlieg: Brief Summary ( Dutch; Flemish )

provided by wikipedia NL

De Middellandse-zeevlieg (of: middellandse zee-boorvlieg) (Ceratitis capitata), is een tweevleugelig insect dat behoort tot de familie boorvliegen (Tephritidae).

De soort wordt soms ook wel mediterrane fruitvlieg genoemd, naar de Engelse naam 'Mediterranean fruit fly'. De Middellandse-zeevlieg behoort echter niet tot de fruitvliegen zoals deze naam suggereert.

De Middellandse-zeevlieg is een invasieve soort die oorspronkelijk afkomstig is uit het Middellandse Zeegebied.

De Middellandse-zeevlieg heeft zich via de internationale fruithandel verspreid tot verschillende werelddelen. De soort komt tegenwoordig voor in delen van Azië en Australië, en Noord- en Zuid-Amerika. De larven van de vlieg brengen grote schade toe aan landbouwgewassen, voornamelijk vruchtendragende planten zoals kersenbomen.

license
cc-by-sa-3.0
copyright
Wikipedia-auteurs en -editors
original
visit source
partner site
wikipedia NL

Appelsinflue ( Norwegian )

provided by wikipedia NO
 src=
Larver som lever i et kornbasert for.
 src=
Pupper.

Appelsinflue (Ceratitis capitata Wiedemann, 1824) tilhører familiegruppen båndfluer (Tephritidae). Den er kjent som Mediterranean fruit fly i engelsktalende land.

Utseende

Appelsinfluen er ca. fire til seks millimeter lang.

Levevis

Larvene til appelsinfluen utvikler seg i en rekke forskjellige fruktslag, særlig sitrusfrukter, men også fiken, kaffe, papaya og mango.

Fluer tilhører gruppen av insekter med fullstendig forvandling (holometabole insekter), som gjennomgår en metamorfose i løpet av utviklingen. Larvene er ofte radikalt forskjellige fra de voksne, både i levevis og i kroppsbygning. Mellom larvestadiet og det voksne stadiet er et puppestadium, en hvileperiode, der fluelarvens indre og ytre organer endres.

Skadedyr

I Norge er ikke appelsinfluen regnet som et alvorlig skadedyr av naturlige årsaker. Men den er et fryktet skadedyr i litt varmere klima.

Systematisk inndeling

Treliste

Eksterne lenker

license
cc-by-sa-3.0
copyright
Wikipedia forfattere og redaktører
original
visit source
partner site
wikipedia NO

Appelsinflue: Brief Summary ( Norwegian )

provided by wikipedia NO
 src= Larver som lever i et kornbasert for.  src= Pupper.

Appelsinflue (Ceratitis capitata Wiedemann, 1824) tilhører familiegruppen båndfluer (Tephritidae). Den er kjent som Mediterranean fruit fly i engelsktalende land.

license
cc-by-sa-3.0
copyright
Wikipedia forfattere og redaktører
original
visit source
partner site
wikipedia NO

Ceratitis capitata ( Portuguese )

provided by wikipedia PT

Ceratitis capitata é uma mosca da família dos tefritídeos, de origem africana mas introduzida nos pomares do Mediterrâneo e no Brasil, dentre outras regiões. Possui coloração geral pardo-amarelada, com diversas manchas e linhas pretas pelo tórax e asas. Popularmente, é conhecida pelos nomes mosca-das-frutas-do-mediterrâneo, mosca-do-mediterrâneo e mosca-rajada.[1]

Referências

  1. FERREIRA, A. B. H. Novo dicionário da língua portuguesa. 2ª edição. Rio de Janeiro. Nova Fronteira. 1986. p. 1 162.
 title=
license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia PT

Ceratitis capitata: Brief Summary ( Portuguese )

provided by wikipedia PT

Ceratitis capitata é uma mosca da família dos tefritídeos, de origem africana mas introduzida nos pomares do Mediterrâneo e no Brasil, dentre outras regiões. Possui coloração geral pardo-amarelada, com diversas manchas e linhas pretas pelo tórax e asas. Popularmente, é conhecida pelos nomes mosca-das-frutas-do-mediterrâneo, mosca-do-mediterrâneo e mosca-rajada.

license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia PT

Середземноморська плодова муха ( Ukrainian )

provided by wikipedia UK
license
cc-by-sa-3.0
copyright
Автори та редактори Вікіпедії
original
visit source
partner site
wikipedia UK

Середземноморська плодова муха: Brief Summary ( Ukrainian )

provided by wikipedia UK
license
cc-by-sa-3.0
copyright
Автори та редактори Вікіпедії
original
visit source
partner site
wikipedia UK

Ceratitis capitata ( Vietnamese )

provided by wikipedia VI

Ruồi vàng đục quả hay còn gọi là ruồi đục quả Địa Trung Hải (Danh pháp khoa học: Ceratitis capitata) là một loài ruồi trong họ ruồi đục quả. Tephritidae.

Phân bố

Ở châu Á, chúng phân bố ở Iran, Israel, Jordan, Lebanon, Saudi Arabia, Syria, Thổ Nhĩ Kì, Yemen. Ở châu Âu chúng có tại Albania, Bulgaria, Croatia, Cyprus, Pháp, Hy Lạp, Italy, Bồ Đào Nha, Slovenia, Tây Ban Nha, Thụy Sĩ. châu Phi chúng có tại Algeria, Angola, Benin, Bostwana, Burkina Faso, Burundi, Cameroon, Congo. Bắc Mỹ chúng xuất hiện tại Mỹ, Trung Mỹ thì có ở Costa Rica, ElSalvador, Guatemala, Honduras, Nicaragua, Panama. Trong khi đó ở Nam Mỹ thì có tại Arhentina, Bolivia, Brazil, Colombia, Ecuador, Paraguay, Peru, Uruguay, Venezuela. Chúng cũng đã xuất hiện tại Việt Nam và gây hại

Đặc điểm

 src=
Ấu trùng

Ruồi trưởng thành: Màu vàng nhạt, mắt màu đỏ. Mãnh lưng ngực màu vàng đến nâu có nhiều đốm đen rõ, góc trước mãnh thuẫn có đường rích rắc màu trắng. Trên cánh có vân ngang màu vàng cam đến nâu tạo thành hình loang lổ. Bụng hình quả lê màu nâu; đốt bụng thứ 3 và nửa sau đốt bụng thứ 4 có băng ngang màu sáng. Con đực có đốt chày và đốt đùi chân giữa có hàng lông dày. Con cái thì ống đẻ trứng dẹt, dài bằng đốt bụng thứ 5 (1mm). Sâu non dài 6,5-9mm. Lỗ thở trước có 8-10 cái u.

Gây hại

Chúng gây hại tới hơn 50% sản phẩm thu hoạch đối với vườn cây ăn trái. Sâu non đào lỗ và chui vào trong tép, thường có giọt gôm nhỏ từ trong lỗ chảy ra. Quả bị đục thường nhiễm nấm bán ký sinh, vết bệnh bắt đầu thối và biến nâu, thịt quả thối rữa và quả rụng xuống. Đây là đối tượng hại rất nguy hiểm đang được báo động hiện nay. Ruồi trưởng thành chích và đẻ trứng vào trái cây gây thoái hóa phần thịt quả làm quả thanh long bị thối không cho thu hoạch.

Chú thích

Tham khảo

Liên kết ngoài

Mã hiệu định danh bên ngoài cho Ceratitis capitata Bách khoa toàn thư sự sống 723951 Hệ thống phân loại NCBI 7213 ITIS 143196 Còn có ở: Wikispecies
license
cc-by-sa-3.0
copyright
Wikipedia tác giả và biên tập viên
original
visit source
partner site
wikipedia VI

Ceratitis capitata: Brief Summary ( Vietnamese )

provided by wikipedia VI

Ruồi vàng đục quả hay còn gọi là ruồi đục quả Địa Trung Hải (Danh pháp khoa học: Ceratitis capitata) là một loài ruồi trong họ ruồi đục quả. Tephritidae.

license
cc-by-sa-3.0
copyright
Wikipedia tác giả và biên tập viên
original
visit source
partner site
wikipedia VI

Средиземноморская плодовая муха ( Russian )

provided by wikipedia русскую Википедию
 src=
Самка, откладывающая яйца

Самка мухи прокалывает своим яйцекладом кожицу плодов и откладывает в них по несколько штук изогнутых яиц длиной от 0,5 до 0,9 мм, имеющих желтоватый либо кремовато-белый цвет. Поверхность яйца имеет характерный сетчатый рисунок[1]. Самка откладывает около 10 яиц в сутки (от 1 до 22), или за всю свою жизнь до 800 (обычно около 300). Эмбриональное развитие занимает один — два дня[1]. Из яиц выходят белого цвета безногие личинки, питающиеся мякотью плодов. Личинки рождаются длиной около 1 мм. По мере загнивания мякоти повреждаемого плода, они продвигаются к его середине. Личинка безногая и достигает длины 7—9 мм[8]. Её тело состоит из 12 члеников с тонким передним концом и с ротовым аппаратом чёрного цвета. Передние дыхальца состоят из 9—11 выростов, имеющих пальцевидную форму. Задний конец тела тупой, несёт на себе задние дыхальца с тремя дыхательными щелями. Личинки проходят 3 стадии развития и заканчивают свое развитие за 2—3 недели (в среднем за 6—10 суток при температуре около 25 °C), достигая к концу развития длины около 10 мм. Вид и состояние плодов, в которых питаются личинки, может влиять на длительность развития. Например, на цитрусовых (особенно в лимонах) развитие личинок личинок длится от 14 до 26 дней, а на зелёном персике от 10 до 15 суток[8]. Оптимальной температура воздуха для развития личинки является промежуток от 20 до 28 °С (развитие прекращается при температуре ниже 12 °С)[2]. Окончив развитие, личинки выходят из плодов (такие поврежденные плоды опадают ранее обычного срока) и окукливаются в верхнем слое почвы. Личинки способны к прыжкам, благодаря чему пупарии могут быть обнаружены в радиусе до 3 метров от упавшего плода, в котором происходило развитие. Пупарий, заключающий в себе куколку, достигает длины 4—5 мм. Он характеризуется овальной, немного вытянутой формой. Окраска его покровов варьирует от жёлтой до тёмно-коричневой. Стадия куколки длится 7—10 дней[1].

На Гавайских островах размножение вида происходит непрерывно: до 15—16 поколений в год. В Бразилии и на Кипре — 8—9 поколений, в Италии — 6—7 поколений, а в Австрии и Западной Германии — 2 поколения в год[1].

Распространение

Инвазивный вид, который был интродуцирован на многие материки. Впервые обнаружен в Южной Америке[2] (по другой информации родиной является Средиземноморье). В начале XIX века вместе с плодами был завезён в Италию и Францию, позднее его обнаружили в Австрии, Испании, Португалии, Греции и других странах Европы. В СССР вид впервые был обнаружен в 1937 и 1964 годах в южных портовых городах (Одесса и Севастополь соответственно)[2][6][11]. На территории России средиземноморская плодовая муха отсутствует, однако при возникновении благоприятных условий есть опасность акклиматизации вида в районах Северного Кавказа, на Черноморском побережье, в Астраханской, Волгоградской и Ростовской областях[1]. Имеются отдельные сообщения о том, что в естественных природных условиях на территории России средиземноморская плодовая муха выявлена в Краснодарском крае (Новороссийск, Анапа), однако эти находки представляют собой единичные очаги в течение одного сезона и не свидетельствуют об акклиматизации вида[12][6].

Глобальный ареал включает Африку, Северную, Центральную и Южную Америку, Австралию и Новую Зеландию[8].

В США вид впервые найден в 1907 году на Гавайских островах, в 1929 году — во Флориде, в 1966 — на территории Техаса, в 1975 — в Калифорнии[8][13].

Расселяется данный вид, главным образом при экспорте и импорте поражённой им растительной продукции. Взрослые мухи переносятся различным транспортом, чему способствует их возможность жить без корма около недели, а при его наличии и больший промежуток времени, до 6—8 месяцев[1].

Распространение средиземноморской плодовой мухи (список стран и регионов)[6]

Экономическое значение

 src=
Личинка, развивающаяся в плоде персика

Опасный инвазивный вид, карантинный объект, вредитель плодовых культур[8][14][15][16].

Повреждают плоды более чем 200 видов различных растений плодовых и овощных культур, преимущественно цитрусовых[17] (лимон, апельсин, мандарин, грейпфрут), а также граната, банана, инжира, хурмы, персика, абрикоса, сливы, черешни, яблони, авокадо, кофе, земляники, финика, винограда, помидоров, баклажанов, болгарского перца и др.[2][18]

Поврежденные личинками плоды преждевременно опадают. В местах повреждения мякоть плодов разрушается, хотя внешне они сохраняют здоровый вид. При яйцекладке повреждается кожура, что способствует гниению плодов и развитию плесени[19]. В районах распространения вида, при случаях его массового размножения, муха может полностью уничтожать урожай плодов, овощей и винограда[2]. Муха повреждает и уничтожает в некоторых странах Средиземноморья и Южной Америки от 30 до 100 % плодов таких важных культур как персик, абрикос и слива[20].

Меры борьбы

Строгий карантин. Вводится запрет на ввоз плодов и овощей из местности, зараженной вредителем, в другие районы и страны, где вредителя нет. Проводится обеззараживание импортных плодов в контрольных карантинных пограничных пунктах и в портах с последующим повторным обеззараживанием в местах реализации[2].

Проводятся обследования овощных насаждений, с отбором овощей с повреждениями, похожими на те, которые наносятся личинками мухи, и отправка их в карантинную лабораторию для определения[21][22].

С целью обнаружения мух в хозяйствах, где возможно её размножение, там устанавливают специальные светоловушки и ловчие ёмкости с патокой, на которые прилетают привлекаемые ими насекомые[2].

Агротехнические мероприятия включают сбор заражённых и опавших плодов в местах скопления вредителя и дальнейшее их уничтожение[23].

Химический способ борьбы заключается в проведении фумигации ввозимой продукции неорганическими фумигантами[24]. Вредителей отлавливают ловушками, содержащими аттрактивные вещества (ангеликовое масло, бродящая патока, тримедлюр). Наиболее распространённый практически во всех странах прием защиты плодов — применение инсектицидов (против взрослых мух применяют карбофос, БИ-58, синтетические пиретроиды)[6].

В США разработана специальная программа «Moscamed» по распространению стерильных самцов средиземноморской плодовой мухи, которая применяется на сопредельных территориях Центральной Америки (Мексики, Гватемалы и других). Попытки использовать различные биологические методы для борьбы со средиземноморской плодовой мухой (например, паразитов яиц и личинок) особых успехов не принесли[6][25]. В одном только штате Калифорния (США) было потрачено более 150 млн долларов на десять программ по борьбе с этим вредителем[26].

Систематика

Вид был впервые описан в 1824 году немецким натуралистом и энтомологом Христианом Рудольфом Вильгельмом Видеманном (1770—1840) под первоначальным названием Tephritis capitata Wiedemann, 1824. Включён в состав подсемейства Dacinae (триба Ceratitidini)[8][27][28].

Примечания

  1. 1 2 3 4 5 6 7 8 9 Савотиков Ю. Ф., Сметник А. И. Справочник по вредителям, болезням растений и сорнякам, имеющим карантинное значение для территории Российской Федерации. — Нижний Новгород: Арника, 1995. — 231 с.
  2. 1 2 3 4 5 6 7 8 9 Савковский П. П. Атлас вредителей плодовых и ягодных культур. — 5-е изд., доп. и перераб. — К.: Урожай, 1990. — P. 96.
  3. Стриганова Б. Р., Захаров А. А. Пятиязычный словарь названий животных: Насекомые. Латинский-русский-английский-немецкий-французский. — М.: РУССО, 2000. — 560 с.
  4. 1 2 Определитель насекомых европейской части СССР. Т. V. Двукрылые, Блохи. Вторая часть / под общ. ред. Г. Я. Бей-Биенко. — Л.: «Наука», 1970. — С. 145. — 943 с. — (Определители по фауне СССР, издаваемые Зоологическим институтом АН СССР; вып. 103). — 5000 экз.
  5. Приказ Минсельхоза РФ от 15.12.14 г., № 501 «Об утверждении перечня карантинных объектов»
  6. 1 2 3 4 5 6 Ceratitis capitata Wied. Средиземноморская плодовая муха (рус.). www.sevin.ru (11 декабря 2015). Проверено 29 января 2017.
  7. 1 2 Papadopoulos N. T. Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) // In Encyclopedia of Entomology Vol. 3. Capinera JL. (editor). — Springer, Heidelberg, 2008. — P. 2318—2322.
  8. 1 2 3 4 5 6 7 Thomas M. C., J. B. Heppner, R. E. Woodruff, H. V. Weems, G. J. Steck, and T. R. Fasulo. Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann) (Insecta: Diptera: Tephritidae) (англ.). edis.ifas.ufl.edu. Проверено 29 января 2017.
  9. Ceratitis capitata (Diagnostics) (англ.) // Bulletin OEPP/EPPO Bulletin : Журнал. — European and Mediterranean Plant Protection Organization, 2011. — Vol. 41, no. 5026. — P. 340–346.
  10. 1 2 В. С. Великань, А. М. Гегечкори, В. Б. Голуб. Определитель вредных и полезных насекомых и клещей плодовых и ягодных культур в СССР / Сост. Л. М. Копанева. — Л.: Колос. Ленинградское отделение, 1984. — 288 p.
  11. Крячко З.Ф., Мельникова Р.Г., Пышкало Р.П. Опыт ликвидации очага средиземноморской плодовой мухи на территории Севастополя. — Крым, Симферополь, 1970.
  12. Агрба А. А., Шинкуба М. Ш. и др. Карантин растений в Абхазии. — Нальчик: ООО «Тетраграф», 2012. — 223 с.
  13. Carey J. R. Establishment of the Mediterranean fruit fly in California (англ.) // Science : Журнал. — 1991. — Vol. 253, no. 5026. — P. 1369–1373. — DOI:10.1126/science.1896848.
  14. Back E. A., Pemberton C. E. The Mediterranean fruit fly in Hawaii. — United States Department of Agriculture Bulletin, 1918. — Vol. 536. — 1—119 p.
  15. Mitchell W. C., Andrew C. O., Hagen K. S., Hamilton R. A., Harris E. J., Maehler K. L., Rhode R. H. The Mediterranean fruit fly and its economic impact on Central American countries and Panama. — UC/AID Pest Management and Related Environmental Protection Project at the University of California, Berkeley, 1977. — 189 p.
  16. De Woskin R. Medfly training manual. Joint cooperative Mediterranean fruit fly eradication project. — United States Department of Agriculture, California Department of Food and Agriculture, Santa Clara County Agriculture Commissioner, Alameda County Department of Agriculture, 1981. — 215 p.
  17. Песоцкая Е. А., Яковлева Н. С. Определитель вредителей и болезней цитрусовых плодов / Министерство сельского хозяйства СССР. Центр. лаборатория по карантину с.-х. растений. — Москва: Изд-во М-ва сел. хоз-ва СССР, 1959. — 100 с.
  18. Акулов Е.Н., Н.В. Белова, О.В. Белякова, Гурина Н.А. Атлас карантинных вредителей, болезней растений и сорняков, наиболее опасных для территории Красноярского края. — Красноярск: Спецпечать, 2012. — 113 с.
  19. Атлас карантинных вредителей. — Краснодар: Управление Федеральной службы по ветеринарному и фитосанитарному надзору по Краснодарскому краю и Республике Адыгея. — 136 с.
  20. Муха средиземноморская плодовая. Ceratitis capitate (англ.). pesticidy.ru. Проверено 29 января 2017.
  21. Атанов Н. М., Комарова Г. Р. и др. Инструкция по выявлению, локализации и ликвидации очагов средиземноморской плодовой мухи. — М., 1997.
  22. Шутова Н. Н. Средиземноморская плодовая муха. — М.: Изд-во МСХ СССР, 1957.
  23. Третьяков Н. Н., Митюшев И. М. Карантинные вредители: идентификация, биология, фитосанитарные меры борьбы. — М.: Изд-во РГАУ — МСХА им. К. А. Тимирязева, 2010. — 93 с.
  24. Государственный каталог пестицидов и агрохимикатов, разрешенных к применению на территории Российской Федерации. — М.: Министерство сельского хозяйства Российской Федерации (Минсельхоз России), 2012.
  25. Programa Moscamed Guatemala (англ.). moscamed-guatemala.org.gt. Проверено 30 января 2017.
  26. Carey James R. The Mediterranean fruit fly in California: taking stock (англ.) // California Agriculture : Журнал. — 1992. — Vol. 46, no. 1. — P. 12–17.
  27. Wiedemann, Christian Rudolph Wilhelm. Analecta entomologica ex Museo Reg. Havniensi maxime congesta. — Kilia, 1824. — P. 55—56. — 66 p.
  28. Ceratitis capitata (Wiedemann 1824) (англ.). Fauna Europaea. Faunaeur.org. Проверено 30 января 2017.
license
cc-by-sa-3.0
copyright
Авторы и редакторы Википедии

Средиземноморская плодовая муха: Brief Summary ( Russian )

provided by wikipedia русскую Википедию
 src= Самка, откладывающая яйца

Самка мухи прокалывает своим яйцекладом кожицу плодов и откладывает в них по несколько штук изогнутых яиц длиной от 0,5 до 0,9 мм, имеющих желтоватый либо кремовато-белый цвет. Поверхность яйца имеет характерный сетчатый рисунок. Самка откладывает около 10 яиц в сутки (от 1 до 22), или за всю свою жизнь до 800 (обычно около 300). Эмбриональное развитие занимает один — два дня. Из яиц выходят белого цвета безногие личинки, питающиеся мякотью плодов. Личинки рождаются длиной около 1 мм. По мере загнивания мякоти повреждаемого плода, они продвигаются к его середине. Личинка безногая и достигает длины 7—9 мм. Её тело состоит из 12 члеников с тонким передним концом и с ротовым аппаратом чёрного цвета. Передние дыхальца состоят из 9—11 выростов, имеющих пальцевидную форму. Задний конец тела тупой, несёт на себе задние дыхальца с тремя дыхательными щелями. Личинки проходят 3 стадии развития и заканчивают свое развитие за 2—3 недели (в среднем за 6—10 суток при температуре около 25 °C), достигая к концу развития длины около 10 мм. Вид и состояние плодов, в которых питаются личинки, может влиять на длительность развития. Например, на цитрусовых (особенно в лимонах) развитие личинок личинок длится от 14 до 26 дней, а на зелёном персике от 10 до 15 суток. Оптимальной температура воздуха для развития личинки является промежуток от 20 до 28 °С (развитие прекращается при температуре ниже 12 °С). Окончив развитие, личинки выходят из плодов (такие поврежденные плоды опадают ранее обычного срока) и окукливаются в верхнем слое почвы. Личинки способны к прыжкам, благодаря чему пупарии могут быть обнаружены в радиусе до 3 метров от упавшего плода, в котором происходило развитие. Пупарий, заключающий в себе куколку, достигает длины 4—5 мм. Он характеризуется овальной, немного вытянутой формой. Окраска его покровов варьирует от жёлтой до тёмно-коричневой. Стадия куколки длится 7—10 дней.

На Гавайских островах размножение вида происходит непрерывно: до 15—16 поколений в год. В Бразилии и на Кипре — 8—9 поколений, в Италии — 6—7 поколений, а в Австрии и Западной Германии — 2 поколения в год.

license
cc-by-sa-3.0
copyright
Авторы и редакторы Википедии

地中海实蝇 ( Chinese )

provided by wikipedia 中文维基百科

地中海实蝇Ceratitis capitata)是一种水果害虫。属于昆虫纲双翅目实蝇科。原产于西非,现已经传播到世界各地,成为入侵物种中国将其列为一类检疫对象。

形态特征

地中海实蝇成虫长4.5~6毫米,头褐色,复眼具蓝色晕光;胸部黑,具有白色和黄色斑纹;腹部黄色,第一节及第三节背板具有两条银灰色横带。足浅黄色。翅宽短,基部布满形状不规则的黄褐或淡黑色斑。雌虫产卵器呈针状,红黄色。幼虫,可长至长7~10毫米,乳白或淡红色。白色,呈纺锤形,长0.7~0.9毫米,前段卵孔区有网状花纹。

  •  src=

    幼虫

  •  src=

    雌虫

危害情况

地中海实蝇成虫在寄主果实表皮下产卵,幼虫在内发育,除了直接摄食果肉外,还会导致细菌真菌病害发生,使整个果实腐烂。已知有253种水果蔬菜被记录为寄主植物。主要危害柑橘苹果无花果番石榴咖啡番茄茄子等。随寄主植物及土壤、工具等远距离传播。

参考资料

外部链接

 src= 维基共享资源中相关的多媒体资源:地中海实蝇
 title=
license
cc-by-sa-3.0
copyright
维基百科作者和编辑

地中海实蝇: Brief Summary ( Chinese )

provided by wikipedia 中文维基百科

地中海实蝇(Ceratitis capitata)是一种水果害虫。属于昆虫纲双翅目实蝇科。原产于西非,现已经传播到世界各地,成为入侵物种中国将其列为一类检疫对象。

license
cc-by-sa-3.0
copyright
维基百科作者和编辑

チチュウカイミバエ ( Japanese )

provided by wikipedia 日本語
Question book-4.svg
この記事は検証可能参考文献や出典が全く示されていないか、不十分です。
出典を追加して記事の信頼性向上にご協力ください。2016年8月
チチュウカイミバエ Medfly insect.jpg 分類 : 動物界 Animalia : 節足動物門 Arthropoda : 昆虫綱 Insecta : ハエ目(双翅目) Diptera 亜目 : ハエ亜目(短角亜目) Brachycera 下目 : ハエ下目 Muscomorpha 上科 : ミバエ上科 Tephritoidea : ミバエ科 Tephritidae 亜科 : ミバエ亜科 Dacinae : Ceratitis : チチュウカイミバエ C. capitata 学名 Ceratitis capitata
(Wiedemann, 1824) 和名 チチュウカイミバエ(地中海実蝿) 英名 Mediterranean fruit fly, Medfly  src= ウィキスピーシーズにチチュウカイミバエに関する情報があります。  src= ウィキメディア・コモンズには、チチュウカイミバエに関連するメディアがあります。

チチュウカイミバエ(地中海実蝿、Ceratitis capitata)は、ハエ目(双翅目)・ミバエ科に属するハエの一種。主に植物を加害するミバエの一種で、数多くの果物野菜を害する害虫であるため、世界各地で非常に警戒されている。

成虫の体長は4.0 ~5.5mm前後、翅と胸の部分にモザイク状の紋様がある。

農業害虫[編集]

柑橘類モモビワリンゴブドウパパイヤグアバコーヒーウリ類、ナスなどきわめて多くの生果実・果菜類(全200種~300種とも)に産卵、生まれた幼虫が果肉部分を食い荒らす。この虫が果実に寄生すると腐敗落果し、ひどい場合には収穫皆無となるほどの被害をもたらす。

このため、日本においてもチチュウカイミバエ発生国から、この寄主となる植物や果実を持ち込むことが植物防疫法により規制されている。

もともとはアフリカ原産であるが、1842年までにスペインから中近東にかけて生息域を拡大、その後オーストラリア南アメリカ、さらにはハワイ諸島に定着した。

アメリカ合衆国本土にもたびたび侵入しているが、1929年フロリダに侵入した際には、アメリカ農務省はすべての農産物の州間輸送を禁止し、600万ドルもの予算を費やす大規模殺虫剤散布事業を実行して根絶に成功した。現在では放射線ガンマ線)照射により生殖能力を奪った不妊虫を放し、侵入を未然に防ぐ不妊虫放飼法が継続して行われている。

注釈・出典[編集]

関連項目[編集]

外部リンク[編集]

 title=
license
cc-by-sa-3.0
copyright
ウィキペディアの著者と編集者
original
visit source
partner site
wikipedia 日本語

チチュウカイミバエ: Brief Summary ( Japanese )

provided by wikipedia 日本語

チチュウカイミバエ(地中海実蝿、Ceratitis capitata)は、ハエ目(双翅目)・ミバエ科に属するハエの一種。主に植物を加害するミバエの一種で、数多くの果物野菜を害する害虫であるため、世界各地で非常に警戒されている。

成虫の体長は4.0 ~5.5mm前後、翅と胸の部分にモザイク状の紋様がある。

license
cc-by-sa-3.0
copyright
ウィキペディアの著者と編集者
original
visit source
partner site
wikipedia 日本語