Bull thistle is a noxious weed that has invaded disturbed habitats across the continent. Distasteful to livestock, it can increase in heavily grazed pastures. It occurs in a wide variety of habitats.
Response of bull thistle to fire depends on the conditions of the fire such as
fire severity, time of burning, prior and subsequent weather conditions
[30], site conditions (e.g., soil moisture content) and composition of the preburn community and seedbank.
Observations in tallgrass prairie sites in South Dakota indicate
that late spring prescribed burning on a
4- to 5-year rotation encourages the growth of
native plants and discourages the growth of Canada thistle (Cirsium arvense),
musk thistle, and bull thistle [31,129].
Additionally, Hulbert [70] suggests that late spring burning in these ecosystems results in fewer forbs
but greater grass production than fall or early spring burning.
A spring prescribed fire following clearcutting in 1968 on Miller Creek in western Montana (when the
lower half of the duff was still wet from snowmelt and rain)
left a continuous, intact duff mantle as a seedbed and killed the aerial
portions of understory herbs and shrubs. Forest succession then began with regrowth
of heartleaf arnica (Arnica cordifolia) and beargrass (Xerophyllum
tenax) and establishment of the offsite colonizers fireweed (Epilobium
angustifolium) and bull thistle. Other sites in the area that were
harvested during the same time period but either unburned or burned in summer or
fall did not have bull thistle in the postdisturbance plant community [137].
Spring prescribed burning in a basin big sagebrush community in east-central Oregon had no significant
effect on bull thistle frequency in postfire year 1 [134]. See the Research Project Summary
of this work for more information on fire effects
on bull thistle and 60 additional forb, grass, and woody plant species.
Lyon's Research Paper
and the Research Project Summary
Vegetation response to restoration treatments in ponderosa pine-Douglas-fir forests of western Montana
also provide information on prescribed fire and postfire response of bull thistle and other plant community species.
More research is needed on short- and long-term secondary effects of fire on bull thistle. See "Postfire
colonization potential" below for more details.
The following description is based on reviews by Beck [15], Klinkhamer and de Jong [80] and Forcella and Randall [50]. It presents characteristics of bull thistle that may be relevant to fire ecology, and is not meant to be used for identification. Keys for identifying bull thistle are available (e.g. [28,53,56,84,161]). A detailed description of the biology of bull thistle is given by Klinkhamer and de Jong [80].
Bull thistle is a biennial, and sometimes annual or monocarpic perennial, forb. In the juvenile phase, individual bull thistle plants form a single rosette with a taproot up to 28 inches (70 cm) long. Rosettes may develop up to 3.3 feet (1 m) in diameter. The taproot does not spread, but develops several smaller lateral roots. Stems have spiny wings and grow 1 to 6.6 feet (0.3 to 2 m) tall, with many spreading branches, and sometimes a single stem. Bull thistle stem leaves are more or less lance-shaped and 3 to 12 inches (7.6-30 cm) long, prickly hairy on the top and very hairy underneath. Lobes on leaves are tipped with stout spines. Bull thistle flowerheads are 1.5 to 2 inches (3.8 to 5 cm) in diameter, 1 to 2 inches (2.5-5 cm) long, usually solitary, and more or less clustered at the ends of shoots and branches. Flowers are subtended by narrow, spine-tipped bracts. Bull thistle fruits are achenes, 1/16th-inch (0.15 cm) long, with a long, hairy plume that is easily detached.
The litter of Cirsium species is said to inhibit the growth of other plants. In bull thistle, this is probably a result of the immobilization of nutrients during the process of litter breakdown [80]. Descriptions of mycorrhizal associations in bull thistle [17,62] and their positive effects on its growth [163] are available.
The origin, distribution and spread of bull thistle are reviewed by Beck [15], Mitich [106] and Forcella and Randall [50]. The following is a summary from these reviews. Bull thistle is native to Europe, from Britain and Iberia northward to Scandinavia, eastward to western Asia, and southward to northern Africa [50]. It is found on every continent except Antarctica, although its distribution is confined mostly to the northern and southern temperate zones. Bull thistle is not native to North America. It is thought to have been introduced to eastern North America during colonial times, and to western North America in scattered locations in the late 1800s and early 1900s. Bull thistle is now common throughout the Pacific States, and it is the most common and widespread of pasture and rangeland thistles in western North America. The Plants database provides a distribution map of bull thistle in the United States.
Although bull thistle has been reported in all 50 states and most Canadian provinces [75,153], it usually is not considered as problematic as musk thistle (Carduus nutans) or Scotch thistle (Onopordum acanthium) [15]. Bull thistle is most troublesome in recently or repeatedly disturbed areas such as pastures, overgrazed rangelands, forest clearcuts, and waste places; and along roads, ditches, and fences. It is also a problem in some natural areas such as Yosemite National Park, California [50].
The following lists reflect ecosystems and cover types in which bull thistle may be invasive. Because it is so widespread and has broad ecological tolerances, it is difficult to exclude many ecosystems as potential hosts of bull thistle plants or populations.
Bull thistle reproduces by abundant seed, some of which may disperse over moderate distances by wind and some of which may remain dormant in the soil for several years (research thus far suggests up to 5 years). Fire can create conditions that are favorable for bull thistle establishment such as an open canopy and areas of bare soil, so if bull thistle seeds are present in or dispersed into the burn area, it is likely to establish in the postfire community. Several examples from the literature indicate bull thistle establishment within a few years after fire [4,5,10,16,137,141,143]. However, in some cases bull thistle was also present in unburned plots [5,7,136], and in another case [143] fire was combined with logging, so it is unclear whether fire was the driving influence in bull thistle establishment. More research is needed regarding adaptations of bull thistle to fire.
Bull thistle is the most common and widespread thistle of pastures and rangelands in western North America, so it occurs in a large number of ecosystems with different FIRE REGIMES. Introduced species can alter the rate of fire spread, the probability of fire occurrence, and the intensity of fire in an ecosystem [30]. It is unclear how the presence of bull thistle alters the fire regime of a given site, and it is unclear how a historical fire regime might affect the presence or abundance of bull thistle at a given site. Dominant species of forest communities in which bull thistle has been noted as a primary or secondary colonizer after disturbance are described in Habitat Types and Plant Communities. Bull thistle also occurs in tallgrass prairie ecosystems, where fire can stimulate flowering of native grasses [31]. In Kansas, frequent burning of tallgrass prairie is said to be effective in keeping out exotic plants on sites where prairie grasses are vigorous [70]. Bull thistle did not occur in any of these communities at the time in which historic fire regimes were functioning, but has established since fire exclusion began. It is unclear how the presence of bull thistle might affect FIRE REGIMES in these communities.
Because it is so widespread and has broad ecological tolerances, it is difficult to exclude many ecosystems as potential hosts of bull thistle plants or populations. The following table provides fire return intervals for several plant communities in which bull thistle may be found. Find further fire regime information for the plant communities in which this species may occur by entering the species name in the FEIS home page under "Find FIRE REGIMES".
Community or Ecosystem Dominant Species Fire Return Interval Range (years) silver fir-Douglas-fir Abies amabilis-Pseudotsuga menziesii var. menziesii > 200 grand fir A. grandis 35-200 [6] maple-beech-birch Acer-Fagus-Betula > 1000 silver maple-American elm A. saccharinum-Ulmus americana sugar maple A. saccharum > 1000 sugar maple-basswood A. s.-Tilia americana > 1000 [158] California chaparral Adenostoma and/or Arctostaphylos spp. 115] bluestem prairie Andropogon gerardii var. gerardii-Schizachyrium scoparium 82,115] Nebraska sandhills prairie A. g. var. paucipilus-Schizachyrium scoparium bluestem-Sacahuista prairie A. littoralis-Spartina spartinae sagebrush steppe Artemisia tridentata/Pseudoroegneria spicata 20-70 [115] basin big sagebrush A. t. var. tridentata 12-43 [134] mountain big sagebrush A. t. var. vaseyana 15-40 [7,21,105] Wyoming big sagebrush A. t. var. wyomingensis 10-70 (40**) [156,168] coastal sagebrush A. californica plains grasslands Bouteloua spp. cheatgrass Bromus tectorum California montane chaparral Ceanothus and/or Arctostaphylos spp. 50-100 [115] sugarberry-America elm-green ash Celtis laevigata-Ulmus americana-Fraxinus pennsylvanica 158] curlleaf mountain-mahogany* Cercocarpus ledifolius 13-1000 [8,135] mountain-mahogany-Gambel oak scrub C. l.-Quercus gambelii 115] Atlantic white-cedar Chamaecyparis thyoides 35 to > 200 [158] Arizona cypress Cupressus arizonica northern cordgrass prairie Distichlis spicata-Spartina spp. 1-3 [115] beech-sugar maple Fagus spp.-Acer saccharum > 1000 [158] California steppe Festuca-Danthonia spp. 115] black ash Fraxinus nigra 158] juniper-oak savanna Juniperus ashei-Quercus virginiana Ashe juniper J. a. western juniper J. occidentalis 20-70 Rocky Mountain juniper J. scopulorum cedar glades J. virginiana 3-7 tamarack Larix laricina 35-200 [115] western larch L. occidentalis 25-100 [6] yellow-poplar Liriodendron tulipifera 158] wheatgrass plains grasslands Pascopyrum smithii 115] Great Lakes spruce-fir Picea-Abies spp. 35 to > 200 northeastern spruce-fir P.-A. spp. 35-200 [44] southeastern spruce-fir P.-A. spp. 35 to > 200 [158] Engelmann spruce-subalpine fir P. engelmannii-A. lasiocarpa 35 to > 200 [6] black spruce P. mariana 35-200 [44] blue spruce* P. pungens 35-200 [6] red spruce* P. rubens 35-200 [44] pine-cypress forest Pinus-Cupressus spp. 6] pinyon-juniper P.-Juniperus spp. 115] whitebark pine* P. albicaulis 50-200 [6] jack pine P. banksiana 44] Mexican pinyon P. cembroides 20-70 [108,148] Rocky Mountain lodgepole pine* P. contorta var. latifolia 25-300+ [3,6,132] Sierra lodgepole pine* P. c. var. murrayana 35-200 [6] shortleaf pine P. echinata 2-15 slash pine P. elliottii 3-8 [158] Jeffrey pine P. jeffreyi 5-30 western white pine* P. monticola 50-200 [6] longleaf-slash pine P. palustris-P. elliottii 1-4 [110,158] Pacific ponderosa pine* P. ponderosa var. ponderosa 1-47 [6] interior ponderosa pine* P. p. var. scopulorum 2-30 [6,12,86] Arizona pine P. p. var. arizonica 2-10 [6] Table Mountain pine P. pungens 158] red pine (Great Lakes region) P. resinosa 10-200 (10**) [44,51] red-white-jack pine* P. r.-P. strobus-P. banksiana 10-300 [44,66] pitch pine P. rigida 6-25 [19,67] pocosin P. serotina 3-8 eastern white pine P. strobus 35-200 eastern white pine-eastern hemlock P. s.-Tsuga canadensis 35-200 eastern white pine-northern red oak-red maple P. s.-Quercus rubra-Acer rubrum 35-200 loblolly pine P. taeda 3-8 loblolly-shortleaf pine P. t.-P. echinata 10 to Virginia pine P. virginiana 10 to Virginia pine-oak P. v.-Quercus spp. 10 to sycamore-sweetgum-American elm Platanus occidentalis-Liquidambar styraciflua-Ulmus americana 158] galleta-threeawn shrubsteppe Pleuraphis jamesii-Aristida purpurea eastern cottonwood Populus deltoides 115] aspen-birch P. tremuloides-Betula papyrifera 35-200 [44,158] quaking aspen (west of the Great Plains) P. t. 7-120 [6,59,101] mesquite Prosopis glandulosa 100,115] black cherry-sugar maple Prunus serotina-Acer saccharum > 1000 [158] mountain grasslands Pseudoroegneria spicata 3-40 (10**) [3,6] Rocky Mountain Douglas-fir* Pseudotsuga menziesii var. glauca 25-100 [6] coastal Douglas-fir* P. m. var. menziesii 40-240 [6,109,130] California mixed evergreen P. m. var. m.-Lithocarpus densiflorus-Arbutus menziesii California oakwoods Quercus spp. 6] oak-hickory Q.-Carya spp. 158] oak-juniper woodland (Southwest) Q.-Juniperus spp. 115] northeastern oak-pine Q.-Pinus spp. 10 to 158] oak-gum-cypress Q.-Nyssa-spp.-Taxodium distichum 35 to > 200 [110] coast live oak Q. agrifolia 6] white oak-black oak-northern red oak Q. alba-Q. velutina-Q. rubra 158] canyon live oak Q. chrysolepis blue oak-foothills pine Q. douglasii-Pinus sabiana 6] northern pin oak Q. ellipsoidalis 158] Oregon white oak Q. garryana 6] bear oak Q. ilicifolia 158] California black oak Q. kelloggii 5-30 [115] bur oak Q. macrocarpa 158] oak savanna Q. m./Andropogon gerardii-Schizachyrium scoparium 2-14 [115,158] chestnut oak Q. prinus 3-8 northern red oak Q. rubra 10 to post oak-blackjack oak Q. stellata-Q. marilandica black oak Q. velutina live oak Q. virginiana 10 to158] interior live oak Q. wislizenii 6] blackland prairie Schizachyrium scoparium-Nassella leucotricha Fayette prairie S. s.-Buchloe dactyloides little bluestem-grama prairie S. s.-Bouteloua spp. 115] redwood Sequoia sempervirens 5-200 [6,48,147] western redcedar-western hemlock Thuja plicata-Tsuga heterophylla > 200 [6] eastern hemlock-yellow birch Tsuga canadensis-Betula alleghaniensis > 200 [158] western hemlock-Sitka spruce T. heterophylla-Picea sitchensis > 200 mountain hemlock* T. mertensiana 35 to > 200 [6] elm-ash-cottonwood Ulmus-Fraxinus-Populus spp. 44,158] *fire return interval varies widely; trends in variation are noted in the species summaryBull thistle is a very widespread weed that can grow in a wide range of environments but is most troublesome in recently or repeatedly disturbed areas such as pastures, overgrazed rangelands, recently burned forests and forest clearcuts, and along roads, ditches, and fences. Even small-scale disturbances such as gopher mounds promote bull thistle establishment and survival [122], and density tends to increase as grazing intensity increases. Bull thistle is seldom found in ungrazed prairies and pastures [15,49,111,159]. Similarly, in Yosemite National Park bull thistle germination was promoted by removal of vegetation and further promoted by soil disturbance [120]. Bull thistle can also colonize areas in relatively undisturbed grasslands, meadows and forest openings [122].
The distribution of bull thistle in Eurasia is closely linked to that of cultivated land. In the U.S., bull thistle is common in regions with intensive cattle commerce. In Canada, it is present in agricultural areas but absent from prairies [80]. In California, bull thistle is widespread and most common in coastal grasslands, along edges of fresh and brackish marshes, in meadows, and in mesic forest openings in the mountains [122]. Landscape patch types where bull thistle was found on the Olympic Peninsula in Washington include riparian cobble bars, riparian shrub communities, and clearcuts [35].
Bull thistle is found on dry and wet soils, but is most common on soils with intermediate moisture [80,120]. It is largely absent from deeply shaded and waterlogged habitats. Bull thistle tolerates a wide range of pH values, though it is rare on soils of pH <4.8-5.0 [80]. It proliferates in pastures subject to nitrogen fertilization [15,80], but has no apparent relationship with potassium or phosphorus content. Bull thistle is less common in sand and on soils of >30% humus content, and almost absent from pure clay [80].
Bull thistle is found as far north as 67°50' N latitude in Scandinavia. In shade, bull thistle is restricted to south-facing slopes. In dry habitats such as coastal dunes it is confined to north-facing slopes [80]. It has been suggested that bull thistle plants are not very invasive in the southern part of its North American range. This has been attributed to a peculiarity in their dispersal biology, where the achenes remain enclosed inside the seedheads after they are fully mature and are released only at the end of the season when the whole plant eventually falls over. Numerous achenes then germinate in situ in a cluster, but apparently only 1 of them survives to maturity [112].
Infestations of bull thistle in North America have been reported as high as 9,200 feet (2,800 m) [37]. Bull thistle was found on alpine sites in Utah [65], and on a subalpine riparian site in Montana [91]. The following table provides some elevational ranges for bull thistle by state:
Area Elevational range References California up to 7,600 feet (2,300 m) [68] Colorado up to 9,000 feet (2,700 m) [133] New Mexico 4,500 to 7,500 feet (1,400-2,300 m) [93] Utah 4,420 to 9,060 feet (1,340-2,745 m) [161]More research is needed to determine the immediate effects of fire on bull thistle plants and seeds. Bull thistle may or may not be killed by fire. In south-central Idaho on a Douglas-fir site where bull thistle was present before prescribed burning, bull thistle frequency declined immediately following burning, then increased 3 years after the burn [90]. Musk thistle, a biennial thistle with a similar life history, may be killed by high-severity fires that kill the root crown, but may survive low-severity fires (see musk thistle). It has been suggested that combustion would only readily take place on mature thistle plants, from which seed would have already dispersed [116].
It is also unclear what effects fire has on bull thistle seeds in the soil. Incidents of rapid colonization after fire [10,16,102] suggest that either bull thistle seeds were present in the soil at the time of the fire and survived to germinate after the overstory was removed, or that bull thistle seeds were dispersed after fire from off-site seed sources. However, when experimental heat treatments including 6 combinations of temperature, duration, and soil moisture were applied to bull thistle seeds from an old-growth Douglas-fir forest seed bank, researchers concluded that even low-severity fire could kill bull thistle seeds. Seed survival was lower in wet soil than in dry soil. In wet soil, 35% of the bull thistle seeds tested survived 122 degrees Fahrenheit (50 °C) for 60 minutes, and 0 seeds survived 167 degrees Fahrenheit (75 °C) or 212 degrees Fahrenheit (100 °C) for 15 minutes. In dry soil, 44% survived 122 degrees Fahrenheit (50 °C) for 60 minutes, 32% survived 167 degrees Fahrenheit (75 °C) for 15 minutes, and 6% survived 212 degrees Fahrenheit (100 °C) for 15 minutes [25].
Impacts: Bull thistle is a problem in pastures because it competes with and decreases desirable forage and has no significant nutritive value for livestock [106]. Sharp spines deter livestock, and presumably wildlife, from grazing. One adult bull thistle plant per square yard decreased spring or summer live weight gains of sheep by about 3.8 lb (1.7 kg) per animal in New Zealand pastures [64]. Bull thistle is a range weed in 20 countries and is more frequent in grazed than in ungrazed pastures. It is regarded as a serious pest in protected areas and parks such as Yosemite, Yellowstone, Teton and Glacier National Parks [50]. Bull thistle may also interfere with growth of Douglas-fir transplants in the Oregon Coast Range as indicated by results presented by Gourley and others [55], where tree growth was improved by control of various weeds, including but not limited to bull thistle.
Bull thistle often dominates recently clearcut forest areas in the Sierra Nevada of California, and infestations may limit growth of replanted tree seedlings. Work in a replanted Sierra clearcut forest indicated that stem growth of ponderosa pine saplings was negatively correlated with density of thistles within about 7 feet (2 m) of pines [123]. Bull thistle also colonizes and maintains high population densities for up to 6 years in clearcuts in redwood and mixed evergreen forests in northwestern California [122].
Control: Bull thistle should be accurately identified before attempting any control measures, since several native species of thistles have a similar appearance. See Klinkhamer and de Jong [80] and General Botanical Characteristics for information on proper identification.
The key to successful management of bull thistle is to prevent seed production. Combining control methods into an integrated management system will result in the best long-term population decreases. Control data suggest that viable seed production by biennial thistles must be eliminated to achieve long-term population decreases, although zero seed production may not be a realistic goal. The transition from seedling to rosette in bull thistle may be the most precarious stage in its life cycle. Seedling and rosette growth stages are the most logical to target for control efforts in biennial thistles.
Desirable plant competition to deter establishment of bull thistle seedlings is a critical part of any biennial thistle management strategy. Recovery of infested areas should not be considered complete until a diverse population of desirable plants has replaced invasive biennial thistles, and bull thistles are a minor to nonexistent component of the plant community. Always monitor and evaluate weed management programs to determine whether and when to repeat and/or modify control treatments [15].
Prevention: Prevention is the most effective method for managing invasive species, including bull thistle [15,139]. Preventing or dramatically reducing seed production will help decrease the spread of infestations. This is accomplished by cleaning mowers, vehicles, and tillage equipment after operation in an infested area. When seeding is necessary, use clean, certified weed-free seed and mulch to ensure that bull thistle or other weeds are not being sown. Preventing the establishment of weeds in natural areas is achieved by maintaining healthy natural communities and by conducting aggressive monitoring several times each year. Monitoring efforts are best concentrated on the most disturbed areas in a site, particularly along roadsides, parking lots, fencelines, and waterways. When an infestation is found, the location can be recorded and the surrounding area surveyed to determine the size and extent of the infestation, so these sites can be revisited on follow-up surveys. For more on monitoring see Johnson [74]. Place a priority on controlling small infestations so they do not expand [15,74].
Good grazing management will stimulate grass growth and keep pastures and rangelands healthy. Healthy pastures and rangeland may be more resistant to biennial thistle invasion. Bare spots caused by overgrazing are prime habitable sites for biennial thistles. In many instances, grazing lands will have to be rested from grazing for grasses to recover. This should be coupled with precipitation cycles, so adequate soil moisture will be available to stimulate grass growth. Grazed pastures that are managed carefully may enhance grass competition and deter thistle survival from seedlings to rosettes [15].
Weed prevention and control can be incorporated into all types of management plans, including logging and site preparation, management of grazing allotments, recreation management, research projects, road building and maintenance, and fire management [152]. See the "Guide to noxious weed prevention practices" [152] for specific guidelines in preventing the spread of weed seeds and propagules under different management conditions.
Integrated management: The goal of any management plan should be not only controlling invasive plants, but also improving the affected community, maximizing forage quality and quantity and/or preserving ecosystem integrity, and preventing reinvasion or invasion by other invasive species, in a way that is complementary to the ecology and economics of the site [40,73]. Effective long-term control requires that invasive plants be removed and replaced by more desirable and weed-resistant plant communities [73]. Once the desired plant community has been determined, an integrated weed management strategy can be developed to direct succession toward that plant community by identifying key mechanisms and processes directing plant community dynamics (site availability, species availability, and species performance) and predicting plant community response to control measures [138]. This requires a long-term integrated management plan [15].
Most often, a single method is not effective for controlling an invasive plant, and many possible combinations of methods can achieve the desired objectives. Methods selected for removal or control of bull thistle on a specific site will be determined by land use objectives, desired plant community, extent and nature of the infestation(s), environmental factors (nontarget vegetation, soil types, climatic conditions, important water resources), economics, and effectiveness and limitations of available control techniques [126]. Killing thistles and decreasing weed populations must be followed by the establishment of desirable vegetation in the newly opened niches; herbicide applications in spring followed by dormant seeding of competitive perennial grasses in the fall is an example of an effective management system for biennial thistles in the western U.S. Similarly, integrating herbicides and biological control agents is likely to be more effective than insects alone [15] (see "Biological control" below, for more information). For information on integrated weed management without herbicides, see the Bio-Integral Resource Center (BIRC) website.
Some examples of combined approaches and considerations for managing bull thistle infestations are presented within the following sections. Managers are encouraged to use combinations of control techniques in a manner that is appropriate to the site objectives, desired plant community, available resources, and timing of applications.
Physical/mechanical: Any mechanical or physical method that severs the root below the soil surface will kill bull thistle plants. However, it is essential to re-vegetate the site with desirable plants to compete with bull thistle that may reinvade from seeds left in the soil. Tillage, hoeing, and hand pulling may provide effective control, providing these operations are done before the reproductive growth stages to prevent seed production. Mowing alone is not an effective control measure for biennial thistles, because some seed will still be produced. Mechanical methods may not be practical on rangeland and natural areas, but could be useful in improved pastures or roadsides [15]. The long duration of flowering in bull thistle increases the importance of timely control operations and may make repeated treatments necessary [49,122].
A single mowing will not control a bull or musk thistle infestation, because infestations often consist of plants of various ages, and stands therefore have nonuniform development and flowering. Bull thistle plants mowed just before seed dispersal do not produce seed or recover well [50,80,122]. If mowed too early, bull thistle plants resprout and flower. About 4% of bull thistles cut 2 to 4 inches (5-10 cm) above the soil surface a month before flowering resprout [121,122].
Bull thistle will not withstand cultivation; however, tillage is not appropriate in wildlands and rangelands since it can damage important desirable species, increase erosion, alter soil structure, and expose the soil for rapid reinfestation by bull thistle and other invasive species [88]. Slicing off the root crown of bull thistle plants is time consuming, but very effective [129]. At Yosemite National Park, less than 5% of adult bull thistles cut at the soil surface resprouted, while over 80% of adult bull thistles in control plots survived and flowered [120,121]. Of the bull thistle plants that resprouted, mean height and number of inflorescences were lower (25 inches or 63 cm and 3.7 flowerheads ) than for adults in control plots (33 inches or 85 cm and 15.8 flowerheads) [121,122]. Plants that were cut at the root crown a few days after their 1st flowers appeared and then laid on the ground produced abundant viable seed, so removing cut stems from areas being cleared may be important [50,122].
Even if bull thistle plants resprout after mechanical control, populations may be reduced by limiting seed production [122]. Removal of adult bull thistle plants must be repeated annually for 4 years or more, since some plants will stay in the rosette form for up to 5 years [121]. Mechanical control may be labor intensive; however, sometimes volunteer groups are available. The Salmon River Restoration Council (SRRC) provides an example of watershed-scale weed control using primarily mechanical control methods.
Fire: See Fire Management Considerations.
Biological: Biological control of invasive species has a long history, and there are many important considerations to be made before the implementation of a biological control program. The reader is referred to other sources [126,164] and the Weed Control Methods Handbook [151] for background information on biological control. Additionally, Cornell University, Texas A & M University, and NAPIS websites offer information on biological control.
In its native range, number of viable seeds produced by bull thistle plants can be greatly reduced by insects feeding on the stem, flowerheads, or seeds [80]. Several agents have been considered and tested for bull thistle control, and those in the following table have been introduced in North America:
Biological control agent Mode of action Areas established References thistle head weevil (Rhinocyllus conicus) larvae eat seed-producing tissue well established in most northwestern and northern plains states; GA, TN, TX, VA [15,36,63,77,125,127] thistle crown weevil (Trichosirocalus horridus) larvae feed on the growing points of thistle rosettes and developing shoots CO, KS, MO, MT, OR, VA, WA, WY [15,125] bull thistle gall fly (Urophora stylata) larvae feed within seed producing tissues of developing seedheads CO, MD, OR, WA, BC, NS, PQ [15,26]Rhinocyllus conicus was introduced from Europe to Montana and Virginia in 1969 to control musk thistle, but it also uses bull thistle. Rhinocyllus conicus will use Carduus, Cirsium, Silybum, and Onopordum genera as hosts but prefers the musk thistle group [127]. In areas where the plant and insect life cycles are synchronized, R. conicus is extremely effective in reducing seed production in musk thistle [125]. It is unclear if it is as effective on bull thistle. Several strains of R. conicus have been identified and they vary in their utilization of various thistle species. At least 1 of these strains does attack some native Cirsium species [89,125], and reviews by Randall [122], Beck [15] and Wilson and McCaffrey [164] indicate that it is known to attack native and rare thistles. Therefore, before releasing insects in a new area containing native Cirsium species, investigate whether any of the local species may be attacked [125]. A detailed discussion of the biology of R. conicus is given by Harris and Shorthouse [63].
Urophora stylata feeds on developing seeds in bull thistle flowerheads and decreases seed production up to 60% [26]. Trichosirocalus horridus was introduced to the U.S. in 1974. This weevil uses thistles of the subtribe Carduinae, including bull thistle, musk thistle, plumeless thistle (Carduus acanthoides), Italian thistle (C. pycnocephalus), Canada thistle, and Scotch thistle. Reports of suppression vary from slight to great. Trichosirocalus horridus is more effective when used in conjunction with R. conicus [125]. In areas of Missouri where R. conicus and T. horridus have been present for over 15 years, an 80 to 90% reduction in thistle populations has occurred [142].
Chemical: Herbicides are effective in gaining initial control of a new invasion or a severe infestation, but are rarely a complete or long-term solution to weed management [23]. Herbicides are more effective on large infestations when incorporated into long-term management plans that include replacement of weeds with desirable species, careful land use management, and prevention of new infestations. Control with herbicides is temporary, as it does not change conditions that allow infestations to occur [169]. See the Weed Control Methods Handbook for considerations on the use of herbicides in natural areas and detailed information on specific chemicals.
Chemical control of bull thistle is reviewed by Beck [15], Forcella and Randall [50], and Randall [122]. Clopyralid, dicamba, MCPA, picloram, 2,4-D, metsulfuron, and chlorsulfuron will all kill bull and musk thistles. Timing of application is important. Autumn is a good time to control biennial thistles with herbicides because all live plants will be seedlings or rosettes, and plants are easiest to control in the seedling and rosette stages. Plants are, however, more difficult to locate at this stage, and cold weather may decrease the effectiveness of some chemicals. Herbicide choice and rates are influenced by growth stage, stand density, and environmental conditions (e.g. drought or cold temperatures). Check with state or county weed specialists for appropriate local use rates and timing. Bull thistle is less aggressive and easier to control than other biennial thistles [14].
In pastures and range containing appreciable quantities of broadleaf forage species, application of any of the herbicides listed above may damage valuable plants and reduce forage production and livestock weight gain as much as that caused by thistle interference [64], so it is important to prevent these and other non-target effects of chemical control.
Cultural: Bull thistle germination and establishment is favored in open areas and by disturbance [15]. No matter what method is used to kill weeds, reestablishment of competitive, desirable plant cover is imperative for long-term control. Fertilization and reseeding with competitive, adapted species is often necessary in areas without a residual understory of desirable plants [126].
Revegetation with aggressive desirable species has been shown to inhibit reinvasion of bull thistle, especially with the help of effective biological control agents and carefully prescribed grazing practices. Promoting desirable competitors is important both after weed control and before weed establishment. Choice of species to sow will depend upon climate, location, and management objectives. The Natural Resource Conservation Service and land grant universities are good sources of information about appropriate perennial grass species for a particular locale. Management that allows grasses to grow taller in spring to shade bull thistle seedlings may decrease seedling establishment and growth [15].
At Thousand Springs Preserve in Idaho, bull thistle invades native grasslands. Where healthy native grasses have re-established, they outcompete bull thistle and their litter prevents bull thistle seeds from reaching the ground and germinating [129]. On a reclaimed parking lot in Illinois that was planted by broadcast seeding and seedling transplants, then burned 5 years later and on an annual basis thereafter, bull thistle decreased over time and was virtually absent by year 7 [78].Bull thistle is usually avoided by grazing animals because of its spines, and thus its proliferation is encouraged by heavy gazing on rangeland and in pastures. Additionally, rosettes that were damaged during heavy grazing on a pasture in New Zealand were stimulated by the damage to regrow [103]. Domestic goats and sheep eat bull thistle seedlings [50,80]. Pasture grazing by domestic sheep can reduce competition from neighboring plants and increase growth, flowering, and seed production, and promote survival of bull thistle seedlings [49]. This may be an issue of timing: spring grazing may encourage bull thistle, while later in the season, sheep may eat bull thistle seedlings or small rosettes [50,80].
Studies in the Netherlands indicate that rabbits eat bull thistle leaves, especially in winter and early spring. The flowering stem may be attacked by a variety of herbivores, which can result in a reduced seed output. If the main stem is severed or damaged by herbivores, secondary flowering stems can form. Recovery of bull thistle after herbivore damage is dependent on moisture availability. Bull thistle seeds are eaten by mice and voles. Birds sometimes eat seeds in the Dutch coastal dune area [80]. Goldfinches eat bull thistle seeds and use the thistledown to build their nests [106]. Bull thistle is included in a list of known grizzly bear food plants [32]. Bull thistle is eaten by Mazama pocket gophers in south-central Oregon [22], and high bull thistle densities were observed in Yosemite National Park in sites of intense pocket gopher digging. Pocket gophers consume taproots from below, and their digging provides sites for further thistle establishment, so that they are effectively "farming" thistles [121]. Bull thistle flower nectar is a favorite of bees and butterflies [84].
Palatability/nutritional value: No information
Cover value: No information
Bull thistle colonization may be enhanced [10,16,102,129] or depressed [31,70] by fire. Observations at preserves in northeastern Oregon suggest that bull thistle establishment is encouraged by wildfire [129]. Conversely, prescribed burning on tallgrass prairie sites in South Dakota discourages bull thistle and encourages native plants [31,129]
Fire can create conditions that are favorable to the establishment of bull thistle such as an open canopy and areas of bare soil, so if bull thistle seeds are present in or dispersed into the burned area, it is likely to establish in the postfire community. Bull thistle densities increased dramatically after a prescribed burn in Yosemite Valley, leading managers to believe that burning promotes thistle populations. It is unclear, however, whether prescribed burning alone caused the increase in bull thistle cover [121].
A detailed description of reproductive and vegetative biology of bull thistle in New Zealand is provided by Michaux [103].
Breeding system: Bull thistle reproduces and spreads entirely from seeds [80]. Bull thistle flowers are bisexual [80,122]. While there is some evidence of self-pollination, selfing may result only in hollow seeds; therefore, bull thistle may require cross-pollination to set fertile seed. Only those plants that flower during the main flowering period, or where plants are growing in sufficient density, will contribute substantially to the following generation [103]. Klinkhamer and de Jong [80] report that self-pollinated plants produce a smaller number of large seeds than do cross-pollinated individuals. A review by Forcella and Randall [50], however, indicates that heavy seeds may be produced through self-pollination, and that these seeds can establish at high rates and enable isolated plants to begin new populations.
Pollination: Bull thistle flowers produce abundant nectar [122] and require pollinators for effective pollination [103]. A wide variety of insects pollinate bull thistle [106]. Pollinators of bull thistle in New Zealand include honey bees, bumble bees, flower flies and various other adult Lepidoptera, Thysanoptera, and Hymenoptera [103].
Seed production: Bull thistle plants produce about 100 to 300 or more seeds per flowerhead under favorable conditions, and anywhere from 1 to over 400 flowerheads per plant [50,79,80,103,122]. Variability in production of seeds per flowerhead and flowerheads per plant yields a wide range in number of seeds produced per plant. Bull thistle seed production can also vary considerably among years and within populations [79]. Size of mature bull thistle plants, timing of flowering and environmental conditions can influence seed production.
The number of viable seeds produced by a bull thistle plant varies with its overall size [50,103], which is, in turn, influenced by competition, site conditions, and herbivory [50]. Seed production and seedling establishment are often enhanced under disturbed conditions, which create open, habitable sites for invasive species [15]. A comparison of bull thistle demography in grazed and ungrazed pastures in Australia found that plants produced nearly 3 times as much seed on average in heavily grazed pasture (33 flowerheads per plant and 198 seeds per flowerhead) compared to ungrazed pasture (19 flowerheads per plant and 149 seeds per flowerhead) when averaged over 3 years [49]. Bull thistle seed production on Dutch coastal dunes was much lower than that recorded in an experimental garden, and was positively correlated with July rainfall. Seed and stem predation contributed to losses of 95% to over 99% in seed production on coastal dunes [79,80].
Time of flowering also affects total seed production in bull thistle. Seed production is highest in flowerheads that bloom during the peak of flowering at a particular location. At this time, more flowers are available for cross-pollination, and pollinators are most active [49,103]. Forcella and Randall [50] suggest that a lack of sufficient photosynthate and nutrients during aging can decrease seed production substantially.
Seed dispersal: Bull thistle seeds are equipped with a feathery pappus that is suited to wind dispersal, although it is unclear how effective this dispersal mechanism is. Several researchers (e.g. [1,92,95,97,137,143,150]) cite instances where bull thistle established after disturbance, possibly from wind-dispersed seed, unless bull thistle plants established from seed carried by animals or human activities or from seed stored in soil (see "Seed banking" section below).
Michaux [103] notes that the pappus readily detaches from bull thistle seed at maturity, so a majority of seeds (91%) fall within a distance of 1.5 times the height of the parent plant. This explains the dense pattern of seedlings near the parent plant often observed in the field [103]. On coastal dunes in the Netherlands, seeds landing within 3, 7, and 106 feet (1, 2, and 32 m) of parent plants represented 50, 66, and 90% of those observed. The remaining 10% reached higher air levels and dispersed to unknown distances greater than 106 feet (32 m) [79]. Based on weight, size, shape, fall speed, and lateral movement of bull thistle achenes in still air, the estimated lateral dispersal distance in a 6-mile-per-hour (10 km/hour) breeze is 38 feet (11.6 m) [94]. These studies suggest that wind dispersal is an inefficient mechanism for the majority of bull thistle seed, even under ideal conditions. However, up to 10% of seeds produced may travel distances of more than 90 feet (27 m), even on days with little wind [122], thus providing opportunities for establishment of new populations.
Rapid migration of bull thistle across large geographical regions is probably the result of human activities including movement of livestock, vehicles, farm machines, and plant products (such as seed and hay) [15,50,103]. Reviews by Mitich [106] and Beck [15] also suggest that bull thistle seeds may be carried by water and animals.
Seed banking: Evidence for seed banking in bull thistle varies. Numerous examples of bull thistle establishment following disturbance suggest either long-distance seed dispersal or seed stored in the soil. Reviews by Doucet and Cavers [41], Michaux [103], and Forcella and Randall [50] indicate that bull thistle is characterized as having either a transient or a very small persistent seed bank. Doucet and Cavers [41] note that studies concluding that bull thistle has a short-lived seed bank (e.g. [79]) only consider seeds located on or near the soil surface, and that seeds buried at least 6 inches (15 cm) may have over 50% viability 3 years after burial. Bull thistle seeds at or near the soil surface either germinate or are destroyed by rodents, insects, or microbes [79]. Those buried at greater depths appear to experience an induced dormancy, and decay more slowly with increasing depth [38,80,103]. A seed bank at 6 inches (15 cm) or deeper will not maintain a bull thistle population from year to year, but it could provide seeds that would re-establish the population after major physical disturbance of the soil [41]. In noncultivated areas, however, bull thistle seeds are not usually buried to great depths.
To form a persistent seed bank, bull thistle seeds would have to exhibit some form of dormancy that would enable them to remain viable at or near the surface of the soil without germinating [41]. Klinkhamer and de Jong [80] state that maintaining bull thistle seeds in an imbibed state in darkness induces dormancy. This suggests that in densely vegetated habitats it is possible that bull thistle seeds may become dormant and remain viable without germinating.
Bull thistle seeds from 2 populations in Ontario established a persistent seed bank when buried 6 inches (15 cm). After storage on the soil surface or at 1-inch (3 cm) depth, bull thistle seeds in sandy soil on an open site did not persist beyond 6 months. In contrast, 2 to 14% of bull thistle seeds stored in shaded conditions in a clay loam soil maintained viability for 30 months at the surface and at 1 inch below the surface, with no decline in the number of viable seeds over time, suggesting an induced dormancy [41]. Induced dormancy might also explain why, although bull thistle was not present in the vegetation of 40- to 60-year-old, closed canopy forest understories in low-elevation forest on the Olympic Peninsula, it germinated from both litter and soil samples when placed in a greenhouse. This result suggests that bull thistle will establish on these sites following overstory removal [61].
Evidence provided by Doucet and Cavers [41,42], and by greenhouse studies in which bull thistle emerged from litter and soil samples from forested sites with little to no bull thistle cover [81,118,146], supports the possibility of a small persistent seed bank in bull thistle. There are also numerous examples of bull thistle's early seral dominance after disturbances such as harvesting [4,5,27,29,57,60,72,113,128,131], burning [10,16], or both [4,5,45,85,104,141], although it is not clear from these studies whether bull thistle established from buried seed or from seed dispersed from an off-site source.
Germination: Bull thistle seed viability is generally high, and may vary between 60 and 90% [80,103] or more [122]. Reviews by Michaux [103] and Klinkhamer and de Jong [80] indicate that bull thistle seeds have little innate dormancy and germinate rapidly after imbibition, while a review by Beck [15] indicates that 60 to 75% of bull thistle seeds may be dormant at maturity, but up to 90% may germinate within a year. A review by Forcella and Randall [50] indicates that the timing of emergence of bull thistle seedlings results from the interaction of dormancy mechanisms, soil temperature, and rainfall patterns and will, therefore, vary by site and regional characteristics. Cavers and others [24] discuss the pattern of germination in bull thistle over time. Germination of bull thistle seeds is affected by moisture, light availability, gap size, and temperature.
Germination of bull thistle seeds typically occurs in spring or fall in response to adequate soil moisture [49,103,106,122]. Bull thistle seed germination is less sensitive to low water potential than that of several other thistle species. The relative germination of bull thistle seeds decreased linearly from 100% at 0 MPa to 10% at -0.75 MPa [58]. In Dutch sand dunes the number of emerging seedlings in spring was related to both soil moisture and soil nitrate levels, implying that, combined with temperature, these 2 factors help to regulate seed germination [33]. Downs and Cavers [43] found that germination rate in bull thistle was reduced after exposure to 2 or more cycles of wetting and drying, and that total percent germination was reduced after exposure to 8 cycles of wetting and drying. This evidence supports the idea that bull thistle seeds may acquire an induced dormancy through exposure to cycles of wetting and drying such as can be experienced in the uppermost layers of soil.
Germination rate of bull thistle seeds tends to decrease as light decreases [80,103,118]. Doucet and Cavers [42] report that fresh bull thistle seeds are capable of germinating in either alternating light and dark or constant dark conditions under favorable diurnal temperatures of 77/50 degrees Fahrenheit (25/10 °C). In a laboratory study, seeds were stored over winter at 41 degrees Fahrenheit (5 °C) in either alternating light and dark, or in constant darkness. Seeds treated with alternating light and dark did not require light for germination when placed under optimal temperatures, whereas seeds treated with constant darkness did require additional light for germination. In the field, seeds that do not germinate in the fall and then spend the winter in darkness (e.g. in deep shade, under leaves, or buried by ants, earthworms or other animals) can acquire this induced dormancy and be prevented from germinating. Such seeds have the potential of forming a persistent seed bank [41,42]. Light requirement for germination of bull thistle seeds is also evidenced by higher germination rates in large (4-8 inches (10-20 cm)) gaps than in smaller gaps (Silvertown and Smith 1989, as cited by [80]). Bull thistle is dependent on canopy gaps for seedling emergence and establishment [20].
Bull thistle seeds germinate well over a wide range of temperatures [50]. Germination of bull thistle seeds is reduced if the temperature is outside the range of 50 to 86 degrees Fahrenheit (10-30 °C). Fresh seeds have higher optimum temperature for germination than stored seeds [80,103].
Seedling establishment/growth: Bull thistle seedling establishment is favored by soil disturbance and seedling growth is favored by vegetation disturbance. The absolute growth of bull thistle seedlings is very low for 2 months after sowing, even under ideal conditions [50]. Transition from seedlings to rosettes is when the greatest attrition in bull thistle populations typically occurs [49,80,121]. Bull thistle seedlings have higher survival rates under high nutrient conditions [11,49].
Bull thistle establishes better in grazed versus ungrazed pasture. About 15% and 10% of seeds from grazed and ungrazed pastures, respectively, produced seedlings, and the average survival of seedlings in grazed and ungrazed pastures was 1% and 0.2% respectively. Fifty percent of rosettes in both pasture types survived and grew into adults [49]. An annual census of 2 bull thistle-infested meadows in Yosemite National Park found that seedlings accounted for about 85% of deaths observed, 13% of mortality was rosettes, and less than 2% of mortality was due to individuals that died after flowering [121]. On Dutch coastal dunes, bull thistle seedling mortality is related to soil moisture content and tends to be high, with only 23 to 47% of seedlings surviving from spring to autumn. Yearly death of rosettes varies between 10 and 69%, with the chance of dying inversely related to rosette size [80]. Bull thistle rosettes that are top-killed under dry or cold stress in the 1st season can grow again from the root crown during late winter or spring [106].
Bull thistle is an early successional species that establishes well in open, disturbed sites, and is an important weed in clearcuts and conifer plantations in the western U.S. [128]. Examples where bull thistle is reported as an early successional component and sometimes dominant after timber harvest (with and without burning) include studies in California [95,97], Oregon [27,45,60,104], Idaho [57,72,141], Montana [4,5,137], and Michigan [29,85]. Bull thistle is 1 of several species of Asteraceae that often become prolific immediately after fire in southern Tasmania, Australia [10], and was a common component in study plots following wildfire and suppression efforts in Glacier National Park in the fall of 1988 [16]. Bull thistle was also among the pioneering species in primary successional habitats on Mount St. Helens following the eruption in 1980 [150]. It is a common component on repeatedly disturbed sites such as roadsides [114] and grazed pastures. In Australia bull thistle populations persisted for 4 years in grazed pasture but declined in ungrazed pasture, suggesting that grazing allowed bull thistle populations to thrive [49].
Populations of bull thistle tend to be short lived, establishing after disturbance, dominating for a few years, and then declining as other vegetation recovers [27,33,41,95,96,155,167]. Few bull thistle plants can be found in undisturbed clearcuts and plantations older than 8 years [128], although some plants may remain for longer periods. After clearcutting of subalpine fir in western Montana, bull thistle cover peaked after 3 years, was still present after 17 years, but was not present on undisturbed sites or 1-year-old cuts [92]. Bull thistle was present 7 to 16 years after clearcutting in grand fir in western Montana, but absent from adjacent uncut forest [2]. Bull thistle was the most frequent species observed 6 to 9 years after clearcutting in Sierra Nevada mixed conifer [1]. The peak distribution of bull thistle in German old fields is 3 to 4 years following disturbance [80]. Specific patterns of succession are described for Douglas-fir and ponderosa pine forests in California and Oregon [98] and for burned Douglas-fir clearcuts in the Coast range of western Oregon, where bull thistle is the dominant species the 2nd year after clearcutting [131].
True biennials are uncommon or absent in late successional plant communities because they often need abundant light for establishment [50]. Doucet and Cavers [41] note that bull thistle is absent from densely shaded areas. A review by Klinkhamer and de Jong [80] indicates that bull thistle is almost absent if light is reduced to less than 40% of full sunlight. Bull thistle invasion is enhanced in pastures with decreased vegetative cover [49]. In a greenhouse experiment, bull thistle germination was not suppressed by sedge (Carex spp.) cover, but subsequent survival of seedlings was reduced and the percentage of seeds that germinated and survived decreased exponentially with increasing cover [121]. In Dutch coastal dunes, however, bull thistle was more restricted to shaded sites [34].
The currently accepted scientific name of bull thistle is Cirsium vulgare
(Savi) Tenore (Asteraceae)
[13,28,39,53,56,69,71,75,76,84,93,107,136,145,157,160,161,165,166].
Bull thistle exhibits variation in several morphological characteristics that
have been described as subspecies by some authors; however, the Flora Europaea
does not recognize these taxa because they lack sufficient morphological or
geographical delimitation [50]. Several hybrids of bull
thistle have been described in Europe, and 1 suggested in California. See
reviews by Klinkhamer and deJong [80] and Forcella and Randall [50] for more
information.
Cirsium vulgare (cardu negru); ensin. C. lanceolatum) ye una especie del xéneru Cirsium, nativa d'Europa, Asia, norte d'África, y presente n'América,siempres como una especie invasora maleza.
Ye un cardu bienal, formando una roseta de fueyes nel primer añu, y un tarmu floral de 1 a 3 m d'altor nel so 2º añu. Les fueyes son espinoses, fondamente lobulaes, de 15 a 25 cm de llargu. (más pequeñes na parte cimera del tarmu floral). La inflorescencia tien 2 a 6 cm de diámetru, rosa a purpúrea. Les granes son de 5 mm de llargu, con un mestu papus qu'asisten na dispersión anemófila.
Cirsium vulgare describióse por (Savi) Ten. y espublizóse en Flora Napolitana 5: 209. 1835-1836.[1]
Númberu de cromosomes de Cirsium vulgare (Fam. Compositae) y táxones infraespecíficos: 2n=68[2]
Cirsium: nome xenéricu que deriva de la pallabra llatina cirsĭŏn, -ĭi —del griegu χιρσός, -ον, varices— vocablu qu'usa Pliniu'l Vieyu (Naturalis Historia, 27, 61) pa identificar un cardu que s'utiliza pal tratamientu d'esti tipu de dolencia. Nos tiempos modernos, el botánicu francés Tournefort (1656 - 1708) derivó'l nome Cirsium.
vulgare: epítetu llatín que significa "común".[3]
Cirsium vulgare (cardu negru); ensin. C. lanceolatum) ye una especie del xéneru Cirsium, nativa d'Europa, Asia, norte d'África, y presente n'América,siempres como una especie invasora maleza.
Adi qanqal (lat. Cirsium vulgare) — Hündürlüyü 50-150 sm, gövdəsi yuxarı hissədə budaqlanmış, bölümlütəhər-qanadlı, nazik hörümçək toruna oxşar tüklü olan ikiillik ot bitkisidir [1].
Yarpaqları üst tərəfdən tikanlarla qismən sıx örtülmüşdür, alt tərəfdən hörümçək toruna oxşar tüklü olub, keçə tüklərə qədər dəyişir, xətvari-uzunsovdur, uzunluğu 5-15 sm, eni 2-7 sm-dir, gövdəyə tədricən birləşəndir, üçkünc-neştərvariyə lələkvari bölünmüşdür, 2-3 ədəd ayrı dilimlərinin bölümləri uc hissədə uzunsərt tikanlı, kənarları isə xırda nazik tikanlıdır.
Səbətləri tikanlı və xirda yarpaqlı gövdə və budaqların uc hissəsində yerləşib, yumurtaşəkillidir, təkdir və eni 2,5 -4,5 sm-dir. Çiçəkləri çəhrayı rəngdən bənövşəyi-tünd qırmızı rəngədək dəyişir.
Toxumları 3-4 mm uzunluqdadır, sarımtıl və ya açıq-qəhvəyi rəngdə olub, qara uzununa zolaqlıdır; kəkili ağımtıldır.
İyun
İyul-sentyabr
Azərbaycanın bütün rayonlarında. Ovalıqdan subalp qurşağına qədər.
Meşə talalarında, yol boyunca, ruderal bitki kimi yaşayış evlərinin yaxınlığında rast gəlinir.
Adi qanqal (lat. Cirsium vulgare) — Hündürlüyü 50-150 sm, gövdəsi yuxarı hissədə budaqlanmış, bölümlütəhər-qanadlı, nazik hörümçək toruna oxşar tüklü olan ikiillik ot bitkisidir .
La lloba-carda (Cirsium vulgare) és una espècie de card del gènere Cirsium, en castellà és el popular cardo borriquero. És nativa de la major part d'Europa (al nord fins a la latitud 66°N, localment fins a 68°N), oest d'Àsia (a l'est fins a la vall del riu Ienissei), i nord-oest d'Àfrica (Muntanyes de l'Atles).[1][2][3] Està també naturalitzada a Amèrica del Nord i Austràlia i és una espècie invasora en alguns llocs.
És una planta biennal alta de 40 a 150 cm d'alçada. Floreix de juny a setembre. La tija resulta alada. Les fulles són oblongues pinnatipartides terminades en una espina de 2 a 10 mm de llargada. Els capítols florals són més o menys pedunculats de 30-40 x 20-40 mm sovint araneosos, la corol·la és purpúria de 26 a 36 mm, els aquenis fan de 3,5 a 5 mm i els papus de 20 a 30 mm.[1][4][5]
Es troba a tots els Països Catalans des de nivell de mar a 1600 metres d'altitud en cardassars, vorada nitròfila del bosc més o menys humit.[6]
La lloba-carda és sovint una espècie ruderal que colonitza terres pertorbades però també persisteix en pastures, ja que als animals no els agrada menjar-se-la. Molts insectes la pol·linitzen i les llavors també són consumides
Està classificada com mala herba nociva a Anglaterra i Austràlia.[7][8] i en nou estats dels Estats Units.[9] El card del mateix gènere calcida es propaga també per trossos d'arrel en canvi la lloba-carda ho fa només per llavors i és més fàcil d'extirpar mitjançant llaurades.
Carduus vulgaris Savi (basiònim), Carduus lanceolatus L., Cirsium lanceolatum (L.) Scop. (non John Hill), Cirsium balearicum Willk., Cirsium linkii Nyman, Cnicus lanceolatus (L.) Willd., Cirsium microcephalum sensu Lange, non Moris, Cirsium crinitum Boiss. ex DC., i Cirsium strigosum (Hoffmanns. & Link) Cout.[2]
La lloba-carda (Cirsium vulgare) és una espècie de card del gènere Cirsium, en castellà és el popular cardo borriquero. És nativa de la major part d'Europa (al nord fins a la latitud 66°N, localment fins a 68°N), oest d'Àsia (a l'est fins a la vall del riu Ienissei), i nord-oest d'Àfrica (Muntanyes de l'Atles). Està també naturalitzada a Amèrica del Nord i Austràlia i és una espècie invasora en alguns llocs.
Planhigyn blodeuol o deulu llygad y dydd a blodyn haul ydy Marchysgallen sy'n enw benywaidd. Mae'n perthyn i'r teulu Asteraceae. Yr enw gwyddonol (Lladin) yw Cirsium vulgare a'r enw Saesneg yw Spear thistle.[1] Ceir enwau Cymraeg eraill ar y planhigyn hwn gan gynnwys Marchysgallen, March Ysgall, March Ysgallen, Marchysgall Berog, Ysgall Gwyllt, Ysgall Gwylltion, Ysgall y Blaidd, Ysgall y Tarw,Ysgallen Goronog, Ysgall Wyllt, Ysgallen y Blaidd.
Daw'r gair "Asteraceae", sef yr enw ar y teulu hwn, o'r gair 'Aster', y genws mwyaf lluosog o'r teulu - ac sy'n tarddu o'r gair Groeg ἀστήρ, sef 'seren'.
Planhigyn blodeuol o deulu llygad y dydd a blodyn haul ydy Marchysgallen sy'n enw benywaidd. Mae'n perthyn i'r teulu Asteraceae. Yr enw gwyddonol (Lladin) yw Cirsium vulgare a'r enw Saesneg yw Spear thistle. Ceir enwau Cymraeg eraill ar y planhigyn hwn gan gynnwys Marchysgallen, March Ysgall, March Ysgallen, Marchysgall Berog, Ysgall Gwyllt, Ysgall Gwylltion, Ysgall y Blaidd, Ysgall y Tarw,Ysgallen Goronog, Ysgall Wyllt, Ysgallen y Blaidd.
Daw'r gair "Asteraceae", sef yr enw ar y teulu hwn, o'r gair 'Aster', y genws mwyaf lluosog o'r teulu - ac sy'n tarddu o'r gair Groeg ἀστήρ, sef 'seren'.
Pcháč obecný (Cirsium vulgare) je silně ostnatá plevelná rostlina s lodyhou vysokou až 150 cm kvetoucí nachovými nebo světle fialovými květy.
Původem je z Evropy a z mírného podnebného pásma Asie a severní Afriky. Druhotně se rozšířil do Severní Ameriky, Austrálie i na Nový Zéland.
Patří mezi světlomilné rostliny, na stinný místech roste na jižních svazích, na písečných dunách na severních. Typickými místy výskytu jsou úhory, málo udržovaná pole, louky a pastviny, skládky, rumiště, okraje lesů a cest, příkopy. Roste hlavně na živiny bohatých půdách kde je dostupná vláha.[2][3][4]
Je to dvouletá nebo krátce vytrvalá rostlina jejíž lodyha vyrůstá z hlavního vřetenovitého kořene dosahující až do hloubky 70 cm. Rýhovaná lodyha, po celé délce ostnatá se v horní části rozvětvuje. Listy jsou tuhé s vyniklými žlutými žilkami, na horní straně jsou zelené a na spodní běloplstnaté. V prvém roce ze semene vyroste těsně k zemi přiléhající listová růžice která přezimuje. Má pichlavé listy vejčité až obkopinaté, jejich čepele jsou ploché, mělce laločnaté až peřenoklané, v druhém roce se listy zkadeří, po vytvoření lodyhy často uschnou. V druhém roce z růžice vyraší květonosná lodyha hustě obrostlá po celé délce sbíhavě kopinatými až podlouhle kopinatými peřenoklanými nebo peřenodílnými listy, na rubu kadeřavě vlnatými. Listy mají dva, tři i více postranních laloků trojúhelníkového nebo vejčitě kopinatého tvaru zakončených dlouhými žlutavými ostny o délce 2 až 15 mm.
Nachové, světle fialové nebo bělavé květy jsou sestaveny v úborech o průměru od 3 do 5 cm. Úbory vyrůstají jednotlivě nebo jsou po dvou až třech sestaveny do chudého okolíku. Zákrov kulovitého nebo vejčitého tvaru o velikosti 2,5 až 3,5 cm bývá někdy jemně pavučinatý. Listeny zákrovu jsou na černohnědé špičce zakončeny ostny o délce 2 až 3,5 cm, vnější listeny jsou esovitě zakřivené. Květy jsou většinou oboupohlavné, někdy jsou květy po obvodu samičí nebo sterilní. Korunní trubka dosahuje délky 2,5 až 3,5 cm. Vykvétá v rozmezí července až října, rostlina kvete po dobu 1 až 6 týdnů. Květy jsou opylovány hmyzem, mohou se opylit vlastním i cizím pylem.
Plodem jsou vejčité žlutohnědé, hnědé nebo černě pruhované nažky 3 až 4 mm dlouhé s chmýrem o délce 20 až 30 mm. Opadavý pérovitý chmýr napomáhá při rozšiřování semen větrem, většina semen přesto doletí jen do vzdálenosti 1,5 násobku výšky rostliny. Průměrný jedinec vyprodukuje až 50 000 nažek, při samoopylení květů je jich míň a jsou větší. Protože se jedná o rostlinu monokarpickou, po vytvoření semen (což bývá v převážné ve druhém roce) lodyha i celá rostlina usychá.[2][3][4][5]
Pcháč obecný je řazen mezi plevelné rostliny, jeho škodlivost však není veliká. Rozmnožování lze úspěšně zabránit zamezením vysemenění, na kypřených nebo kosených pozemcích se proto nevyskytuje. V případě potřeby vymýcení rostlin vzešlých z náletu větrem roznesených nažek, např. z okrasného trávníku, se používá selektivní herbicid.
Hovězí dobytek se při pastvě jeho ostnatým listům a lodyhám záměrně vyhýbá a tím snižuje okolní konkurenci jiných rostlin. Čerstvá nebo usušená píce s pcháčem může způsobit dobytku poranění a záněty zažívacího ústrojí. Jeho semena jsou vítanou pochoutkou pro některé ptáky, například pro stehlíka.[3]
Jedná o proměnlivý druh s řadou vnitrodruhových taxonů. Je schopen vytvářet křížence s jinými druhy. Na území ČR byli nalezeni tito kříženci: Cirsium acaule × vulgare, Cirsium eriophorum × vulgare, Cirsium heterophyllum × vulgare, Cirsium oleacerum × vulgare, Cirsium palustre × vulgare.[2]
Pcháč obecný (Cirsium vulgare) je silně ostnatá plevelná rostlina s lodyhou vysokou až 150 cm kvetoucí nachovými nebo světle fialovými květy.
Horsetidsel (Cirsium vulgare) er en toårig plante i kurvblomst-familien. Den når en højde på op til 150 cm, og den blomstrer fra juli til september.
Første år udvikles en bladroset med en kraftig pælerod. Andet år udvikles den blomsterbærende stængel. Bladhovedtidslen horsetidsel bliver normalt indtil 1,5 meter høj og er ofte grenet foroven. Stænglen er stift opret, grågrøn og spindelvævhåret. Den har kraftig tornede, nedløbende bladvinger. Bladene er lancetformede og fjersnitdelte med mere eller mindre fligede endeafsnit, som bærer kraftige, gule torne i forlængelse af bladnerverne og er noget nedløbende på stænglen, som er hvidfiltede på undersiden, grågrønne og stivhårede på oversiden.
Kurvene er lyslilla, sjældnere hvidlige. Frugten er 3-5 mm lang og med 2-3 cm lang, fjerformet fnok. Dens blomster bestøves af insekter, især bier.
Kurvene er 3-4 cm brede og sidder enligt for enden af grenene. Kurvbladene er smalt lancetformede, grå og spindelvævhårede og med en lang udstående, stiv torn i spidsen. Horsetidsel er dog meget variabel i højde og i graden af behåring. Især unge bladrosetter kan være meget tæt hårede.
Den foretrækker en næringsrig jord på lyse pladser i en tør til middelfugtig kvælstofrig bund på rydninger, langs veje, på brakmarker, græsmarker osv.
Horsetidsel er almindelig i hele landet, men især på Øerne og i Østjylland.
Horsetidsel (Cirsium vulgare) er en toårig plante i kurvblomst-familien. Den når en højde på op til 150 cm, og den blomstrer fra juli til september.
Die Gewöhnliche Kratzdistel (Cirsium vulgare (Savi) Ten., Syn.: Cirsium lanceolatum (L.) Scop.), auch Lanzett-Kratzdistel genannt, ist eine Pflanzenart, die zur Unterfamilie der Carduoideae innerhalb der Familie der Korbblütler (Asteraceae) gehört. Sie sieht der Acker-Kratzdistel und der Sumpf-Kratzdistel ähnlich.
Die Gewöhnliche Kratzdistel ist die Nationalblume Schottlands.
Die Gewöhnliche Kratzdistel ist eine zweijährige Pflanze und erreicht eine Wuchshöhe von 50 bis 350 Zentimetern. Die Laubblätter sind wechselständig, die Blattform ist oval bis lanzettlich. Die Blätter sind doppelt fiederspaltig und am Stängel herablaufend. Die Blattoberseite ist stachelig-steifhaarig, die Unterseite kurzhaarig bis weißfilzig. Alle Fiederabschnitte sind dornig gezähnt und laufen in einem langen gelben Dorn aus.
Die Blütenkörbe haben einen Durchmesser von bis zu 4 Zentimetern. Während der Blüte ist der Korb in der Höhe der Blüten fast doppelt so breit wie der oberste Teil der Korbhülle. Die Korbhülle hat keinen Wollfilz. Die Blüten sind purpurfarben. Blütezeit ist von Juli bis Oktober, die Bestäubung erfolgt durch Insekten. Die Achänenfrüchte haben eine abgeflacht-zylindrische Form. Der Pappus besteht aus langen, federartig behaarten Strahlen.
Die Chromosomenzahl beträgt 2n = 68.[1][2]
Die Gewöhnliche Kratzdistel ist ein zweijähriger Hemikryptophyt mit Wurzelrübe. Die im ersten Jahr gebildete Blattrosette ist sehr regelmäßig aufgebaut.
Im Gegensatz zur Acker-Kratzdistel (Cirsium arvense) ist diese Art eine reine Pollenblume ohne Nektarproduktion. Die Blütezeit erstreckt sich von Juni bis Oktober.
Die Früchte sind 4–5 mg schwere Achänen mit einem hygroskopischen Haarkelch; sie breiten sich durch den Wind aus und haben wegen ihres Gewichts eine Fallgeschwindigkeit von nur 22 cm/s. Es erfolgt auch eine Bearbeitungsausbreitung durch Finken.
Die Fruchtreife erstreckt sich von August bis November.
Als Weideunkraut kann die Gewöhnliche Kratzdistel sehr lästig sein. Goethe, der für seine Zeit auch ein exzellenter Botaniker und Gärtner war, wusste bereits, dass man durch Ausstechen der Rosetten der Distelplage Herr wird. In seiner Italienischen Reise äußert er sich entsprechend abfällig über die italienischen Hirten.
Die Art gehört zu den Nahrungspflanzen der Raupen des Distelfalters (Vanessa cardui), die meist in einem zusammengesponnenen Blatt oder einem Gespinst zwischen Stiel und Blattansatz sitzen.
Die Samen werden vom Stieglitz (Carduelis carduelis) gefressen.
Man kann die folgenden Unterarten unterscheiden[3]:
Das Verbreitungsgebiet der Gewöhnlichen Kratzdistel umfasst Europa, Nordafrika, die gemäßigten Zonen Asiens und Pakistan. In Nord- und Südamerika, im übrigen Afrika, auf den Kanaren, Azoren und auf Reunion, in Australien, Neuseeland, in Neukaledonien, in Israel, im Jemen und auf Hawaii ist sie ein Neophyt.[4] Man findet die Gewöhnliche Kratzdistel häufig in staudenreichen Unkrautgesellschaften, an Wegen, Schuttplätzen, Ufern und in Waldschlägen. Sie ist eine in Mitteleuropa indigene Art. Sie bevorzugt mäßig trockene bis frische, nährstoffreiche, humose, lockere Lehmböden.[1] Nach Ellenberg ist sie eine Lichtpflanze, ein Mäßigwärmezeiger, ein Frischezeiger, ein Schwachsäure- bis Schwachbasezeiger, ein ausgesprochener Stickstoffzeiger und eine Charakterart der Klasse Ruderaler Beifuß- und Distelgesellschaften (Artemisietea vulgaris). Sie hat ihren Schwerpunkt in Gesellschaften der Ordnung Onopordetalia.[1]
In den Allgäuer Alpen steigt sie im Kleinwalsertal auf der Mittleren Spitalalpe bei Baad bis zu 1520 m Meereshöhe auf.[5]
Die Gewöhnliche Kratzdistel wird vom Rostpilz Puccinia cnici var. cnici befallen.[6]
Für die Gewöhnliche Kratzdistel bestehen bzw. bestanden auch die weiteren deutschsprachigen Trivialnamen: Moordistel (Göttingen) und Sperdistel (Schlesien).[7]
Die Gewöhnliche Kratzdistel (Cirsium vulgare (Savi) Ten., Syn.: Cirsium lanceolatum (L.) Scop.), auch Lanzett-Kratzdistel genannt, ist eine Pflanzenart, die zur Unterfamilie der Carduoideae innerhalb der Familie der Korbblütler (Asteraceae) gehört. Sie sieht der Acker-Kratzdistel und der Sumpf-Kratzdistel ähnlich.
Die Gewöhnliche Kratzdistel ist die Nationalblume Schottlands.
Cirsium vulgare (burr-thristle or buck-thristle) is a species o the daisy genus Cirsium, native ootthrou maist o Europe (north tae 66°N, locally 68°N), Wastren Asie (east tae the Yenisei Valley), an northwastren Africae (Atlas Moontains).[2][3][4][5][6]
Cirsium vulgare (burr-thristle or buck-thristle) is a species o the daisy genus Cirsium, native ootthrou maist o Europe (north tae 66°N, locally 68°N), Wastren Asie (east tae the Yenisei Valley), an northwastren Africae (Atlas Moontains).
Lancetowaty kagùlc (Cirsium vulgare (Savi.) Ten.) – to je ôrt roscënë z rodzëznë astrowatëch (Asteraceae). Òn rosce m. jin. na Kaszëbach.
At prüket fisel (Cirsium vulgare) as en fisel faan det famile Asteraceae.
Cirsium vulgare, the spear thistle, bull thistle, or common thistle, is a species of the Asteraceae genus Cirsium, native throughout most of Europe (north to 66°N, locally 68°N), Western Asia (east to the Yenisei Valley), and northwestern Africa (Atlas Mountains).[2][3][4][5] It is also naturalised in North America, Africa, and Australia and is an invasive weed in some areas.[6][7][8] It is the national flower of Scotland.
The plant provides a great deal of nectar for pollinators. It was rated in the top 10 for most nectar production (nectar per unit cover per year) in a UK plants survey conducted by the AgriLand project which is supported by the UK Insect Pollinators Initiative.[9] Marsh thistle, Cirsium palustre, was ranked in first place while this thistle was ranked in sixth place. It also was a top producer of nectar sugar in another study in Britain, ranked third with a production per floral unit of (2300 ± 400 μg).[10]
It is a tall biennial or short-lived monocarpic thistle, forming a rosette of leaves and a taproot up to 70 cm long in the first year, and a flowering stem 1–1.5 m tall in the second (rarely third or fourth) year. It can grow up to 1.8 metres (5 ft 11 in) tall.[11] It sometimes will function as an annual, flowering in the first year. The stem is winged, with numerous longitudinal spine-tipped wings along its full length. The leaves are stoutly spined, grey-green, deeply lobed; the basal leaves grow up to 30 centimetres (12 in) long,[11] with smaller leaves on the upper part of the flower stem; the leaf lobes are spear-shaped (from which the English name derives). The inflorescence is 2.5–5 cm diameter, pink-purple, with all the florets of similar form (no division into disc and ray florets). The seeds are 5 mm long, with a downy pappus, which assists in wind dispersal. As in other species of Cirsium (but unlike species in the related genus Carduus), the pappus hairs are feathery with fine side hairs.[12][13]
Spear thistle is often a ruderal species, colonising bare disturbed ground, but also persists well on heavily grazed land as it is unpalatable to most grazing animals.[13] Nitrogen-rich soils help increase its proliferation.[14] The flowers are a rich nectar source used by numerous pollinating insects, including honey bees, wool-carder bees, and many butterflies.[15] The seeds are eaten by goldfinches, linnets and greenfinches.[16] The seeds are dispersed by wind, mud, water, and possibly also by ants; they do not show significant long-term dormancy, most germinating soon after dispersal and only a few lasting up to four years in the soil seed bank.[17] Seed is also often spread by human activity such as hay bales.[13]
Spear thistle is designated an "injurious weed" under the UK Weeds Act 1959,[18] and a noxious weed in Australia[17][19][20] and in nine US states.[21] Spread is only by seed, not by root fragments as in the related creeping thistle C. arvense. It is best cleared from land by hoeing and deep cutting of the taproot before seeds mature; regular cultivation also prevents its establishment.[13]
Despite this label, the plant has beneficial qualities beyond its very high nectar production. It produces seeds eaten by the American goldfinch, down from seed pods that is used by those birds for nesting material, and serves as a host plant for the painted lady butterfly. The monarch butterfly and other larger-sized butterflies can feed easily from the flowers due to their large size. Some farmers, due to its usefulness as part of the natural food chain, may find it useful to allow it to grow in beetle banks. The supports for pollinators and pest-eating birds could outweigh its drawbacks. In areas where it does not form monocultures it may also be welcome as a part of a meadow landscape.
Common names include bull thistle,[13][22] Scots, Scottish, or Scotch thistle, and common thistle.[22]
The stems can be peeled (removing their spiny surfaces) and then steamed or boiled.[11] The tap roots can be eaten raw or cooked, but are only palatable on young thistles that have not yet flowered.[23] The dried florets steeped in water are used in rural Italy for curdling goats' milk in preparation for making cheese.
The plant features in some Scottish ceremonies such as the "Riding of the Marches", held annually in Langholm in July. The 1992 specimen measured six feet in length[24]
Spear thistle is also the emblem of Newton Regis in England.[24]
Cirsium vulgare, the spear thistle, bull thistle, or common thistle, is a species of the Asteraceae genus Cirsium, native throughout most of Europe (north to 66°N, locally 68°N), Western Asia (east to the Yenisei Valley), and northwestern Africa (Atlas Mountains). It is also naturalised in North America, Africa, and Australia and is an invasive weed in some areas. It is the national flower of Scotland.
The plant provides a great deal of nectar for pollinators. It was rated in the top 10 for most nectar production (nectar per unit cover per year) in a UK plants survey conducted by the AgriLand project which is supported by the UK Insect Pollinators Initiative. Marsh thistle, Cirsium palustre, was ranked in first place while this thistle was ranked in sixth place. It also was a top producer of nectar sugar in another study in Britain, ranked third with a production per floral unit of (2300 ± 400 μg).
Cirsium vulgare es una especie de cardo del género Cirsium en la familia Asteraceae. Es nativa de Europa, Asia, norte de África, y está introducida en América, donde se comporta como una maleza.
Se trata de un cardo bienal o perenne, rizomatoso, con tallos de hasta 2 m de altura, alados en toda su longitud, generalmente ramificados en la mitad superior. Las hojas tienen el haz cubierto de espinas cortas y desiguales y el envés generalmente aracnoideo; las inferiores pecioladas, oblanceoladas, ligeramente lobadas; las caulinares sesiles, largamente decurrentes, pinnatífidas. Los capítulos, sentados o cortamente pedunculados, tienen un involucro de 20-40 por 20-45 mm, acampanado, con brácteas lanceoladas, usualmente divergentes; las externas y medias con dorso aquillado y espina apical de 5-8 mm. Los flósculos, de color rosa a purpúreo tienen el tubo de 15-20 mm y el limbo de 9-12 mm dividido casi hasta la mitad en 5 lóbulos. Las cipselas, de 3,5-4,5 por 1-2 mm, son ovoideas, glabras, frecuentemente maculados de negro, con placa apical plana de borde entero y con nectario central persistente rodeado de un vilano de varias filas de pelos plumosos de 18-25 mm soldados en un anillo basal y caedizo en bloque.[1][2]
Cirsium vulgare fue descrita primero por Gaetano Savi como Carduus vulgaris en Flora Pisana, vol. 2, p. 241-242 en 1798, y atribuida posteriormente al género Cirsium por Michele Tenore y publicado entonces en Flora Napolitana, vol. 5, P. 209, 1835-1836.[3]
Número de cromosomas: 2n=68[4]
Cirsium: nombre genérico derivado del latín cirsĭŏn, -ĭi —del griego χιρσός, -ον, varices— vocablo que usa Plinio el Viejo (Naturalis Historia, 27, 61) para identificar un cardo que se utiliza para el tratamiento de este tipo de dolencia. En los tiempos modernos, el botánico francés Joseph Pitton de Tournefort (1656 - 1708) ha derivado el nombre genérico Cirsium.
vulgare: epíteto latino que significa "común".[5]
Cirsium vulgare es una especie de cardo del género Cirsium en la familia Asteraceae. Es nativa de Europa, Asia, norte de África, y está introducida en América, donde se comporta como una maleza.
Tuliohakas (Cirsium vulgare) on korvõieliste sugukonda ohaka perekonda kuuluv kaheaastane rohttaim.
Tuliohakas kasvab pärismaisena Euroopas, Aasias ja Põhja-Aafrikas.
Taim kasvab 30–120 cm kõrguseks. Ta õitseb juulist septembrini.
Tuliohakas (Cirsium vulgare) on korvõieliste sugukonda ohaka perekonda kuuluv kaheaastane rohttaim.
Tuliohakas kasvab pärismaisena Euroopas, Aasias ja Põhja-Aafrikas.
Taim kasvab 30–120 cm kõrguseks. Ta õitseb juulist septembrini.
Astakardua (Cirsium vulgare) Asteraceae familiako landarea da, ia Europa osoan, mendebaldeko Asian eta ipar-mendebaldeko Afrikan jatorria duena. Kardu mota txikia, jateko ona ez dena.[1]
Astakardua (Cirsium vulgare) Asteraceae familiako landarea da, ia Europa osoan, mendebaldeko Asian eta ipar-mendebaldeko Afrikan jatorria duena. Kardu mota txikia, jateko ona ez dena.
Piikkiohdake (Cirsium vulgare) kuuluu ohdakkeiden sukuun ja asterikasvien heimoon. Se on yleinen muinaistulokas koko Suomessa aina Oulun korkeuksille asti. Kasvia tavataan myös Keski- ja Etelä-Euroopassa sekä Pohjois-Amerikassa, missä se on tulokaslaji.[2]
Piikkiohdake kasvaa yleensä ottaen aika kuivilla kasvupaikoilla, kuten esimerkiksi niityillä, tienvarsilla, joutomailla, laitumilla, pihoilla ja hakkuuaukeilla. Piikkiohdake kasvaa noin 30–120 senttimetriä korkeaksi ja sen kukinto on vaaleahkonpunainen tai vaaleahkonvioletti. Se kukkii heinä-syyskuussa. Sen mykeröt ovat yksittäisiä tai muutaman mykerön kokoisissa tertuissa. Mykeröt ovat noin 3–4 senttimetrin levyisiä. Piikkiohdakkeen lehdet ovat yleensä ottaen vihreitä, pariliuskaisia, päältä hienopiikkisiä ja alta harmaakarvaisia. Varren siipipalteiden, lehtilaitojen ja kehtosuomujen piikit ovat vankkoja ja keltaisia. Piikkiohdakkeen vanha tieteellinen nimi oli Cirsium lanceolatum.
Piikkiohdake on Skotlannin kansalliskukka.[3]
Piikkiohdake (Cirsium vulgare) kuuluu ohdakkeiden sukuun ja asterikasvien heimoon. Se on yleinen muinaistulokas koko Suomessa aina Oulun korkeuksille asti. Kasvia tavataan myös Keski- ja Etelä-Euroopassa sekä Pohjois-Amerikassa, missä se on tulokaslaji.
Piikkiohdake kasvaa yleensä ottaen aika kuivilla kasvupaikoilla, kuten esimerkiksi niityillä, tienvarsilla, joutomailla, laitumilla, pihoilla ja hakkuuaukeilla. Piikkiohdake kasvaa noin 30–120 senttimetriä korkeaksi ja sen kukinto on vaaleahkonpunainen tai vaaleahkonvioletti. Se kukkii heinä-syyskuussa. Sen mykeröt ovat yksittäisiä tai muutaman mykerön kokoisissa tertuissa. Mykeröt ovat noin 3–4 senttimetrin levyisiä. Piikkiohdakkeen lehdet ovat yleensä ottaen vihreitä, pariliuskaisia, päältä hienopiikkisiä ja alta harmaakarvaisia. Varren siipipalteiden, lehtilaitojen ja kehtosuomujen piikit ovat vankkoja ja keltaisia. Piikkiohdakkeen vanha tieteellinen nimi oli Cirsium lanceolatum.
Piikkiohdake on Skotlannin kansalliskukka.
Cirsium vulgare
Le Cirse commun (Cirsium vulgare), ou Cirse à feuilles lancéolées, est une plante bisannuelle appartenant au genre Cirsium et à la famille des Astéracées (ou Composées).
Cirsium vulgare est une grande plante (de 30 à plus de 150 cm de hauteur) présentant des tiges rigides épineuses.
Les feuilles sont alternes, vertes sur les deux faces, couvertes d'épines sur la face supérieure.
L'inflorescence, qui apparaît entre juin et octobre, est un racème de capitules et mesure de 30 à 50 mm. Les fleurs, roses, sont hermaphrodites et mellifères[1]. La pollinisation entomogame ou autogame.
Le fruit est un akène soyeux, semblable à celui du pissenlit[1], qui se dissémine par anémochorie.
Le Cirse commun a de nombreuses appellations locales dont Cirse à feuilles lancéolées ; Cirse commun ; Cirse lancéolé ; Chardon lancéolé ; Chardon vulgaire ou commun ; Gros chardon ; Piqueux.
Cirsium vulgare est une plante commune qui pousse en terrain découvert (chemins, clairières, décombres, terrains vagues...). On la rencontre sur tous les continents soit à l'état spontané (Europe, Asie, Afrique du Nord) soit naturalisé (Afrique subsaharienne, Amérique du Nord, Amérique du Sud, Australie, Océanie). En France elle est présente sur tout le territoire y compris en Corse.
L'espèce est envahissante en Nouvelle-Calédonie[2], où elle a été introduite accidentellement dans le fourrage d'importation en 1969. Les infestations concernent surtout la côte ouest[1].
Plusieurs parties de la plante sont consommables. La racine pivotante peut être consommée crue ou cuite (elle a un goût assez doux), mais uniquement sur les jeunes plants qui n'ont pas encore fleuri (tige florale pas encore apparue au centre de la rosette) cette racine devenant creuse et fibreuse à l'approche de la floraison. Les feuilles piquantes peuvent être hachées et soumises au sac à jus ou à la passoire pour préparer une soupe (préparation désignée par le docteur Ernest Bonnejoy sous le nom de « soupe aux choux inodore »[3].) ou un gaspacho. La jeune pousse pelée est croquante, à la saveur sucrée et salée, et est consommée crue ou cuite à la vapeur ou bouillie. Le réceptacle floral, cru ou cuit, a un goût d'artichaut. Les jeunes fleurs sont aussi comestibles et ont servi jadis à coaguler le lait, comme celles d'autres chardons[4],[5].
Cirsium vulgare
Le Cirse commun (Cirsium vulgare), ou Cirse à feuilles lancéolées, est une plante bisannuelle appartenant au genre Cirsium et à la famille des Astéracées (ou Composées).
Il cardo asinino (nome scientifico Cirsium vulgare (Savi) Tenore, 1835) è una pianta erbacea biennale angiosperma dicotiledone, abbastanza robusta e caratteristicamente spinosa, appartenente alla famiglia delle Asteraceae.[1][2]
Il nome del genere (cirsium) deriva dalla parola greca kirsos = varice; da questa radice deriva poi la denominazione Kirsion, un vocabolo che sembra servisse a identificare una pianta usata per curare questo tipo di malattia. Da kirsion in tempi moderni il botanico francese Tournefort (1656 - 708) derivò il nome Cirsium dell'attuale genere.[3][4]
Il nome italiano “cardo” è abbastanza generico in quanto nel linguaggio comune si riferisce a diversi generi e specie di piante. Tra i generi che vengono chiamati direttamente “cardo”, oppure hanno una o più specie che comunemente si chiamano con questo nome citiamo: Carduus, Carduncellus, Carlina, Centaurea, Cnicus, Cynara, Echinops, Galactites, Jurinea, Onopordum, Scolymus, Silybum, Tyrimnus, tutti della famiglia delle Asteraceae. Ma anche in altre famiglie abbiamo dei generi con delle specie che volgarmente vengono chiamate “cardi” : il genere Eryngium della famiglia delle Apiaceae o il genere Dipsacus della famiglia delle Dipsacaceae.
Il binomio scientifico della pianta di questa voce è stato proposto in via definitiva dal botanico italiano Michele Tenore (Napoli, 5 maggio 1780 – Napoli, 19 luglio 1861) nella pubblicazione ” Flora Napolitana, Napoli, 1-5, Stamperia Reale; Napoli, Tipografia del Giornale Enciclopedico; Napoli, Stamperia Francese.”Copia digitale della Flora Napolitana del 1835-1838.[5]
L'epiteto specifico (vulgare) significa “comune” e fa riferimento alla sua distribuzione.[6]
La pianta può raggiungere l'altezza di 1,5 m (ma a volte può superare anche i 2 m fino a 3 m) normalmente è alta sui 50–70 cm. È pelosa (peli tipo tricomi), molto robusta e pungente. È considerata una pianta arbustiva. La forma biologica della specie è emicriptofita biennale ("H bienn"'); sono piante a ciclo riproduttivo biennale per mezzo di gemme poste al suolo. Nel corso del primo anno presentano solamente una rosetta fogliare mentre nel secondo anno fioriscono completamente. Per questa pianta è possibile anche la forma biologica terofita scaposa (T scap), sono piante erbacee che differiscono dalle altre forme biologiche poiché, essendo annuali, superano la stagione avversa sotto forma di seme e sono munite di asse fiorale eretto e spesso privo di foglie.[7][8][9][10][11][12][13][14][15]
Il fusto si presenta con molti steli eretti a rami divaricati e alato a causa dei margini inferiori delle foglie che sono decorrenti (ossia che decorrono lungo il fusto) e dentato-pungenti. Il fusto, pubescente, è completamente ricoperto di aculei patenti e lunghi fino a 3 mm; la sua sezione è angolosa, mentre all'interno contiene del midollo.
Le foglie sono rade e rigide con forme da pennatosette a pennatopartite profondamente incise con segmenti triangolari-lanceolati e distanziati tra loro. Tali segmenti, ineguali, terminano in un aculeo robusto e giallastro. Le foglie basali sono picciolate (con picciolo alato). La disposizione delle foglie superiori lungo il fusto è alterna, sono inoltre sessili e decorrenti per tutto l'internodo. Quelle più distali sono progressivamente più piccole. Le foglie sulla pagina superiore sono verdi e glabrescenti con un fitto strato di fini aculei cornei; su quella inferiore sono fittamente bianco - ragnatelose (quasi tomentose). I peli lungo le venature sono del tipo a tricoma. Dimensione delle foglie: larghezza 7–10 cm (massimo 15 cm); lunghezza 20–30 cm (massimo 40 cm); lunghezza delle spine: 1–1,5 cm
L'infiorescenza è composta da diversi grandi capolini sub - sessili, ovoidi, solitari posti all'apice di peduncoli in formazioni corimbose o panicolate (tipo pannocchia). Non sono presenti le brattee fogliacee. La struttura del capolino è composta da un involucro a forma globosa – piriforme (a forma di fiamma) formato (e circondato) da numerosissime brattee (10 – 12 ranghi di squame embricate) a forma lineare-lanceolata (quelle interne sono più lineari) e terminanti con una punta triangolare e spinosa (lunga da 2 a 5 mm), riflessa (ripiegata lievemente all'indietro man mano che si procede verso il basso). All'interno dell'involucro è presente il ricettacolo che fa da supporto ai fiori centrali: fiori del disco (quelli periferici, i fiori del raggio, in questo genere di piante è assente). Dimensione totale del capolino: 2–4 cm di diametro. Lunghezza dei peduncoli: 1–6 cm. Dimensione dell'involucro: larghezza 2,5 cm; lunghezza 3 cm.
I fiori sono ermafroditi (a volte quelli più periferici sono sterili) e tutti di forma tubulosa (il tipo ligulato, come nella maggioranza delle Asteraceae, è assente). Possono essere presenti fino a 200 fiori tubulosi per ogni capolino. Sono inoltre tetraciclici (calice – corolla – androceo – gineceo) e pentameri.
Il frutto è un achenio di 3,5–5 mm di colore marrone chiaro con striature più scure e un collare apicale, con un pappo bianco piumoso-setoloso di circa 2–3 cm. Il pappo ha la funzione di aiutare la dispersione del seme portato quindi dal vento. Un individuo adulto ha la capacità di produrre decine di migliaia di semi. Studi fatti indicano che la maggior parte delle sementi ricadono entro un metro dalla pianta madre, ma almeno il 10% possono arrivare anche a 300 metri distanti anche con vento debole.
Dal punto di vista fitosociologico alpino la specie di questa voce appartiene alla seguente comunità vegetale:[18]
In generale il C. vulgare è una specie euriecia (specie con un ampio grado di adattabilità) frequente su suoli alluvionali umidi. Le seguenti comunità vegetali rappresentano gli habitat più naturali per questa specie:[15]
La famiglia di appartenenza di questa voce (Asteraceae o Compositae, nomen conservandum) probabilmente originaria del Sud America, è la più numerosa del mondo vegetale, comprende oltre 23.000 specie distribuite su 1.535 generi[23], oppure 22.750 specie e 1.530 generi secondo altre fonti[24] (una delle checklist più aggiornata elenca fino a 1.679 generi)[25]. La famiglia attualmente (2021) è divisa in 16 sottofamiglie.[1][10][26]
Cardueae è una delle 4 tribù della sottofamiglia Carduoideae. La tribù Cardueae a sua volta è suddivisa in 12 sottotribù (la sottotribù Carduinae è una di queste). Il genere Cirsium elenca 435 specie con una distribuzione cosmopolita, 35 delle quali sono presenti spontaneamente sul territorio italiano.[2][10][11][12][27][28]
Il genere di questa voce è inserito nel gruppo tassonomico della sottotribù Carduinae.[12] In precedenza provvisoriamente era inserito nel gruppo tassonomico informale "Carduus-Cirsium Group".[10] La posizione filogenetica di questo gruppo nell'ambito della sottotribù è abbastanza vicina al "core" della sottotribù (con il genere Carduus forma un "gruppo fratello") e dalle analisi molecolari è stato calcolato in 7,2 milioni di anni fa la separazione di questo genere dal resto del gruppo (è stato l'ultimo a separarsi).[27][28]
Il genere Cirsium spesso viene botanicamente “confuso” con altri generi come quello del Carduus o Cnicus (e di altri ancora). Le specie del primo genere ad esempio sono molto simili a quelle del Cirsium, anche se una certa distinzione è possibile servendosi dell'aspetto del pappo (in Cirsium è formato da setole piumose; mentre in Carduus è composto da pagliette denticolate scabre).
Il problema della classificazione di queste piante è appesantito inoltre dell'alto grado di fecondazione intraspecifica della specie (basta vedere l'elenco degli ibridi di questo paragrafo). Anche se in alcuni ibridi la fertilità è ridotta, in altri è notevolmente sviluppata indicando la mancanza delle normali barriere intraspecifiche; si crea così un buon potenziale per l'emergere di nuove combinazioni di caratteri. In effetti più di qualche ibrido può non essere riconosciuto come tale e trattato come variante o addirittura come taxa autonomo.
Il numero cromosomico di C. vulgare è: 2n = 68 e 102.[15][29][30]
Il basionimo per questa specie è: Carduus vulgaris Savi, 1798.[18]
I caratteri distintivi di questa specie nell'ambito del genere sono:[31][32]
Questi caratteri sono condivisi con la seguente specie (sono indicati alcuni caratteri distintivi della specie):[32]
Nell'elenco seguente sono indicate le sottospecie riconosciute valide per il C. vulgare:[33]
In altre parti dell'Italia (specialmente meridionale) sono state segnalate diverse varietà o specie[13]; taxon che attualmente sono tutti considerati sinonimi di C. vulgare:
Nell'elenco seguente sono indicati alcuni ibridi intraspecifici:
Le difficoltà di classificazione del “Cardo asinino” nel tempo ha generato un considerevole numero di sinonimi. Nel box di approfondimento sono elencati alcuni.[33]
ApprofondimentoSinonimi
Per la medicina popolare questa pianta ha le seguenti proprietà medicamentose:[36]
Le parti usate sono soprattutto le foglie sotto forma di un impiastro.
In alcune zone vengono usate per scopi alimentari i fiori, le foglie e le radici. Il capolino cotto ha un gusto che ricorda un po' il carciofo. Le radici in genere sono utilizzate insieme ad altre verdure, oppure essiccate per la conservazione. Le radici sono ricche di amido inulina per cui l'utilizzo è in parte sconsigliato. I giovani steli possono essere mangiati cotti dopo un bagno di 24 ore nell'acqua salata, ma vanno privati dalle spine.[36]
Dalla pianta si può ricavare della carta (ottenuta da una fibra interna del fusto) e dell'olio (ottenuto dai semi).[36]
Il cardo asinino (nome scientifico Cirsium vulgare (Savi) Tenore, 1835) è una pianta erbacea biennale angiosperma dicotiledone, abbastanza robusta e caratteristicamente spinosa, appartenente alla famiglia delle Asteraceae.
Dygioji usnis (Cirsium vulgare) – astrinių (Asteraceae) šeimos augalų rūšis, priklausanti usnių (Cirsium) genčiai. Natūraliai paplitusi Europoje, Azijoje, Šiaurės Afrikoje, kaip invazinė – Šiaurės Amerikoje.
Tai dvimetis žolinis augalas. Aukštis iki 1,2-5 m. Stiebas status, vagotas, gausiai dygliuotas. Lapai dygliuoti, skiautėti, įdubę 15-25 cm ilgio. Žiedynas 2,5-5 cm skersmens, rausvas, dvinamis. Sėklos 5 mm ilgio, prikibusios prie skristuko.
Dygioji usnis – įkyri piktžolė, auganti pievose, daržuose, pakelėse, tarp javų.
De speerdistel (Cirsium vulgare, synoniem: Cirsium lanceolatum) is een plant uit het geslacht vederdistel.
De plant wordt 60 tot 120 cm hoog. De onderzijde van het blad is kort tot spinnenwebachtig behaard. De bladeren lopen uit in lange gele stekels en hebben een iets omgerolde rand. De plant bloeit met 3-5 cm lange hoofdjes, die onder de paarse bloempjes zijn ingesnoerd. De bloei duurt van juni tot eind september.
De speerdistel heeft van de distels de scherpste en grootste stekels. De bloemen zijn omgeven door puntige omwindselblaadjes. Het omwindsel is spinnenwebachtig behaard. De vruchtjes zijn aan de top voorzien van geveerd vruchtpluis (distelpluis). Het is een tweejarige plant, in het eerste jaar vormen zich de wortel en het bladrozet en in het tweede jaar ontwikkelen zich de bloemen en vruchten.
De speerdistel komt voor in weilanden, bermen en op dijken. De speerdistel is ook als sierplant in gebruik.
De plant is rijk aan nectar en wordt bezocht door de honingbij, hommels, waaronder de akkerhommel, vlinders en zweefvliegen. Op de plant kan o.a. de zwarte bonenluis voorkomen.
In de heraldiek is sinds de middeleeuwen een op een distel lijkende plant het symbool van Schotland. Het zou gaan om de wegdistel (Onopordum acanthium),[1] maar sommige biologen achten het onwaarschijnlijk dat deze soort in Schotland voorkwam in de middeleeuwen en dat het mogelijk gaat om de speerdistel.[2][3]
De speerdistel (Cirsium vulgare, synoniem: Cirsium lanceolatum) is een plant uit het geslacht vederdistel.
Vegtistel er ei urt i korgplantefamilien. Arten er utbreidd i Europa, Asia og Nord-Afrika.
Planta er kring 70 cm høg og har grov grågrøn stengel med mange greiner. Ho har buktfinna blad med lange kvasse tornar, kvitlodne på undersida. Oversida har små tornar. Korgdekkblada er grågrøne og sprikjande med kvass gul odd.
Vegtistelen blømer kring juli månad i vegkantar, på turre stader og avfallsplassar. Han finst i det sørlege Noreg så langt nord som til Salten. Planta er blitt funne opp til 680 m på Voss.
Vegtistel er ei urt i korgplantefamilien. Arten er utbreidd i Europa, Asia og Nord-Afrika.
Planta er kring 70 cm høg og har grov grågrøn stengel med mange greiner. Ho har buktfinna blad med lange kvasse tornar, kvitlodne på undersida. Oversida har små tornar. Korgdekkblada er grågrøne og sprikjande med kvass gul odd.
Vegtistelen blømer kring juli månad i vegkantar, på turre stader og avfallsplassar. Han finst i det sørlege Noreg så langt nord som til Salten. Planta er blitt funne opp til 680 m på Voss.
Veitistel (latin: Cirsium vulgare) er en toårig plante i tistelslekten (Cirsium) av korgplantefamilien (Asteraceae). Veitistel blir 30–150 cm høy, og blomstrer fra juli til september. Blomstene er sterkt purpurrøde eller klar-lilla.
Veitistel har grågrønn, stikkende og forgreinet stengel, og parstilte, annethver motsatte blader som er flikete med pigger. Stengelen har vingekanter som danner tornemønster, og lange, lyse pigger. Bladene er eggerunde eller lansettformede med dype fliker. Bladene er delvis nedstående og har også gule, spisse torner.
Begeret (korgen) er ovalt eller klokkeformet, med jevne og regelmessige utstående pigger på hvert korgdekkblad. Korgdekkbladene er grågrønne.
Blomsterstanden på korgen springer ut med grønngul farge, men blir raskt purpurrød eller lilla. Hvite blomster er svært sjelden. Korgen er 3–5 cm i diameter, men planten har som regel på samme tid korger av ulik modenhetsgrad og størrelse.
Veitistel (latin: Cirsium vulgare) er en toårig plante i tistelslekten (Cirsium) av korgplantefamilien (Asteraceae). Veitistel blir 30–150 cm høy, og blomstrer fra juli til september. Blomstene er sterkt purpurrøde eller klar-lilla.
Veitistel har grågrønn, stikkende og forgreinet stengel, og parstilte, annethver motsatte blader som er flikete med pigger. Stengelen har vingekanter som danner tornemønster, og lange, lyse pigger. Bladene er eggerunde eller lansettformede med dype fliker. Bladene er delvis nedstående og har også gule, spisse torner.
Begeret (korgen) er ovalt eller klokkeformet, med jevne og regelmessige utstående pigger på hvert korgdekkblad. Korgdekkbladene er grågrønne.
Blomsterstanden på korgen springer ut med grønngul farge, men blir raskt purpurrød eller lilla. Hvite blomster er svært sjelden. Korgen er 3–5 cm i diameter, men planten har som regel på samme tid korger av ulik modenhetsgrad og størrelse.
A l'é na pianta erbosa con gamba drita auta da 50 a 180 m, con la miola sentral bin gròssa, e ali lateraj spinose. Le feuje a l'han la pagina dë dzora vërda e cola 'd sota peilosa e biancastra, forma triangolar e a finisso con na spina giauna. Le fior, reusa-viòla, a son gropà an bocc sarà ant na sòrt ëd càpsula oval, con dle spin-e a ponta triangolar. Ij frut a son gropà ant dij fiòch bianch.
A-j piaso ij santé, le stra 'd campagna, ij teren un pòch ùmid e dru, fin a 1.700 méter.
Da giugn a stèmber.
Soe feuje a peulo esse bon-e da mangé. La nervadura sentral a peul esse cusin° com ël card, e le feuje a peulo esse cheujte con jë spinass o purament esse dovrà per jë mnestron.
A l'é na pianta erbosa con gamba drita auta da 50 a 180 m, con la miola sentral bin gròssa, e ali lateraj spinose. Le feuje a l'han la pagina dë dzora vërda e cola 'd sota peilosa e biancastra, forma triangolar e a finisso con na spina giauna. Le fior, reusa-viòla, a son gropà an bocc sarà ant na sòrt ëd càpsula oval, con dle spin-e a ponta triangolar. Ij frut a son gropà ant dij fiòch bianch.
AmbientA-j piaso ij santé, le stra 'd campagna, ij teren un pòch ùmid e dru, fin a 1.700 méter.
FioriduraDa giugn a stèmber.
ParticolaritàSoe feuje a peulo esse bon-e da mangé. La nervadura sentral a peul esse cusin° com ël card, e le feuje a peulo esse cheujte con jë spinass o purament esse dovrà per jë mnestron.
Fior e fiòch
Fiòch
Ostrożeń lancetowaty (Cirsium vulgare (Savi.) Ten.) – gatunek wieloletniej rośliny zielnej należący do rodziny astrowatych. Gatunek kosmopolityczny, szeroko rozprzestrzeniony na wszystkich kontynentach (poza Antarktydą) i na wielu wyspach[3]. W Polsce bardzo pospolity[4]. We florze Polski gatunek ten ma niepewny status[5].
Ostrożeń lancetowaty (Cirsium vulgare (Savi.) Ten.) – gatunek wieloletniej rośliny zielnej należący do rodziny astrowatych. Gatunek kosmopolityczny, szeroko rozprzestrzeniony na wszystkich kontynentach (poza Antarktydą) i na wielu wyspach. W Polsce bardzo pospolity. We florze Polski gatunek ten ma niepewny status.
Cirsium vulgare é uma espécie de planta com flor pertencente à família Asteraceae.
A autoridade científica da espécie é (Savi) Ten., tendo sido publicada em Flora Napolitana 5: 209. 1835–1836.[1]
O seu nome comum é cardo-roxo.[2]
Trata-se de uma espécie presente no território português, nomeadamente em Portugal Continental, no Arquipélago dos Açores e no Arquipélago da Madeira.
Em termos de naturalidade é nativa de Portugal Continental e introduzida nos Arquipélago dos Açores e da Madeira.
Não se encontra protegida por legislação portuguesa ou da Comunidade Europeia.
Cirsium vulgare é uma espécie de planta com flor pertencente à família Asteraceae.
A autoridade científica da espécie é (Savi) Ten., tendo sido publicada em Flora Napolitana 5: 209. 1835–1836.
O seu nome comum é cardo-roxo.
Pichliač obyčajný (Cirsium vulgare) je silno ostnatá, burinná rastlina z čeľade astrovité s byľou vysokou až 150 cm, ktorej kvety sú svetlofialovej farby.
Pôvodom je z Európy a z mierneho podnebného pásma Ázie a severnej Afriky. Druhotne sa rozšíril do Severnej Ameriky, Austrálie a aj na Nový Zéland.
Patrí medzi svetlomilné rastliny, rastie na južných svahoch a na piesočných dunách. Typickými miestami výskytu sú málo udržiavané polia, lúky a pastviny, skládky, rumovištia, okraje lesov a ciest, priekopy. Rastie hlavne na pôdach bohatých na živiny, kde je dostupná vlaha.[2][3][4] Kvety sú bohatým zdrojom nektáru pre opeľujúci hmyz ako včely medonosné, divoké včely a množstvo motýľov.[5]
Tento článok je čiastočný alebo úplný preklad článkov Cirsium vulgare na anglickej Wikipédii a Pcháč obecný na českej Wikipédii.
Pichliač obyčajný (Cirsium vulgare) je silno ostnatá, burinná rastlina z čeľade astrovité s byľou vysokou až 150 cm, ktorej kvety sú svetlofialovej farby.
Vägtistel (Cirsium vulgare) är en art i familjen korgblommiga växter.
Den är tvåårig, blir 30–150 cm hög, och blommar från juli till september. Blommorna är intensivt purpurröda eller klar-lila.
I de nordiska länderna hör vägtisteln till de kraftigast beväpnade tistlarna och är vanlig till exempel längs vägkanter och på hård betesmark. Den blir inte så stor men kan ändå utgöra ett besvärligt ogräs. Den har taggar både på bladen och på de bladlika lister som från bladen löper ned på stjälken. Även blommornas skyddsblad, holkfjällen, slutar med en sylvass tagg. Liksom enen skyddar vägtisteln, med sina taggiga blad, spädare växter mot att betas av boskap eller trampas ned av djur och människor.
Vägtisteln är i Skandinavien utbredd norrut upp till polcirkeln.
Tre underarter är noterade:
Vägtistel (Cirsium vulgare) är en art i familjen korgblommiga växter.
Den är tvåårig, blir 30–150 cm hög, och blommar från juli till september. Blommorna är intensivt purpurröda eller klar-lila.
I de nordiska länderna hör vägtisteln till de kraftigast beväpnade tistlarna och är vanlig till exempel längs vägkanter och på hård betesmark. Den blir inte så stor men kan ändå utgöra ett besvärligt ogräs. Den har taggar både på bladen och på de bladlika lister som från bladen löper ned på stjälken. Även blommornas skyddsblad, holkfjällen, slutar med en sylvass tagg. Liksom enen skyddar vägtisteln, med sina taggiga blad, spädare växter mot att betas av boskap eller trampas ned av djur och människor.
Vägtisteln är i Skandinavien utbredd norrut upp till polcirkeln.
Cirsium vulgare là một loài thực vật có hoa trong họ Cúc. Loài này được (Savi) Ten. mô tả khoa học đầu tiên năm 1835. [1] Nó là quốc hoa của Scotland. [2]
Cirsium vulgare là một loài thực vật có hoa trong họ Cúc. Loài này được (Savi) Ten. mô tả khoa học đầu tiên năm 1835. Nó là quốc hoa của Scotland.
Двулетнее растение. В первый год образует розетку листьев, на второй — разветвлённый стебель высотой до 1,5 м, прямостоячий, опушённый, слегка ребристый.
Корень узкий, стержневой, веретенообразный.
Листья очерёдные, ланцетные, выемчато-перисто-раздельные или перисто-лопастные, с колючками по краям. Нижние длиной до 15—25 см, верхние мельче. Листовая пластинка сверху покрыта мелкими прижатыми шипиками, снизу шерстисто-опушённая.
Соцветия — крупные (до 5 см) округло-яйцевидные корзинки, расположенные одиночно на верхушках стеблей. У основания имеет шарообразную обвёртку из узких кроющих листочков с колючками на концах. Цветки розовые или малиновые, трубчатые, обоеполые, все одинаковой формы. Цветёт бодяк с июля по сентябрь.
Плоды — продолговатые, длиной 4—5 мм, семянки с хохолком из белых перистых волосков. Созревают в июле—ноябре, разносятся ветром.
Бодяк обыкновенный является сорным растением в садах и огородах, реже на полях.
В литературе имеются сведения[2], что можно использовать в пищу молодые побеги бодяка, а также донца нераскрывшихся соцветий, подобно артишоку.
Двулетнее растение. В первый год образует розетку листьев, на второй — разветвлённый стебель высотой до 1,5 м, прямостоячий, опушённый, слегка ребристый.
Корень узкий, стержневой, веретенообразный.
Листья очерёдные, ланцетные, выемчато-перисто-раздельные или перисто-лопастные, с колючками по краям. Нижние длиной до 15—25 см, верхние мельче. Листовая пластинка сверху покрыта мелкими прижатыми шипиками, снизу шерстисто-опушённая.
Соцветия — крупные (до 5 см) округло-яйцевидные корзинки, расположенные одиночно на верхушках стеблей. У основания имеет шарообразную обвёртку из узких кроющих листочков с колючками на концах. Цветки розовые или малиновые, трубчатые, обоеполые, все одинаковой формы. Цветёт бодяк с июля по сентябрь.
Плоды — продолговатые, длиной 4—5 мм, семянки с хохолком из белых перистых волосков. Созревают в июле—ноябре, разносятся ветром.
翼蓟(学名:Cirsium vulgare)是菊科蓟属的植物,又名歐洲薊,分布在俄罗斯、欧洲、地中海地区、北非以及中国大陆的新疆等地,並在北美洲作为入侵生物存在,生长于海拔800米至1,800米的地区,多生长于田间或潮湿草地。[1]
兩年生植物。首年長出簇葉,次年開花,高1~2.5米。葉有深裂口而多刺,長15~25公分 (花附近的葉子較短)。花序直徑2.5~5公分,粉紫色,小花形式單一,只有管狀花,沒有舌狀花。種子有冠毛,藉以隨風傳播。
翼蓟(学名:Cirsium vulgare)是菊科蓟属的植物,又名歐洲薊,分布在俄罗斯、欧洲、地中海地区、北非以及中国大陆的新疆等地,並在北美洲作为入侵生物存在,生长于海拔800米至1,800米的地区,多生长于田间或潮湿草地。
アメリカオニアザミ(学名: Cirsium vulgare)はキク科アザミ属の多年草。日本には本来分布していない外来種。和名に「アメリカ」とあるがヨーロッパ原産のアザミであり、誤解をさけるためセイヨウオニアザミと呼ばれることがある。
ヨーロッパ原産。
日本には、北海道、本州、四国に移入分布する。北アメリカ、アフリカ南部、オーストラリアでも外来種として定着している。
畑、牧草、道端などに生育する。
茎の高さは0.5-1.5mになる。7-10月頃に紅紫色の頭状花を咲かせる。根生葉は羽状に深裂しロゼット状になる。葉や茎、総苞片には鋭い棘があり、手袋をしていても貫通するため注意を要する。一年草もしくは二年草。種子はタンポポのように綿毛で風に乗って拡散する。
日本へは北アメリカから輸入された穀物や牧草に混入して持ち込まれた[6]。1960年代に北海道で初めて確認され、本州や四国でも定着しているが、特に北海道に多い[7]。
利尻島や世界遺産の知床国立公園などの自然度の高い地域に侵入し、在来種と競争し駆逐している[7]。ニホンジカはアメリカオニアザミを食べないため、シカの多い地域(知床など)では本種が増えている[8]。また、牛などの家畜も本種を食べることはなく、酪農地帯では放牧地の害草として知られている[9]。
外来生物法により、要注意外来生物に指定されている。棘を有するため、抜き取って駆除するのは大変である。
アメリカオニアザミ(学名: Cirsium vulgare)はキク科アザミ属の多年草。日本には本来分布していない外来種。和名に「アメリカ」とあるがヨーロッパ原産のアザミであり、誤解をさけるためセイヨウオニアザミと呼ばれることがある。